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Abstract

connectivity may be a useful biomarker in SCA 7.

Background: Spinocerebellar ataxia type 7 (SCA7) is a genetic disorder characterized by degeneration of the motor
and visual systems. Besides neural deterioration, these patients also show functional connectivity changes linked to
the degenerated brain areas. However, it is not known if there are functional connectivity changes in regions not
necessarily linked to the areas undergoing structural deterioration. Therefore, in this study we have explored the
whole-brain functional connectivity of SCA7 patients in order to find the overall abnormal functional pattern of this
disease. Twenty-six patients and age-and-gender-matched healthy controls were recruited. Whole-brain functional
connectivity analysis was performed in both groups. A classification algorithm was used to find the discriminative
power of the abnormal connections by classifying patients and healthy subjects.

Results: Nineteen abnormal functional connections involving cerebellar and cerebral regions were selected for the
classification stage. Support vector machine classification reached 92.3% accuracy with 95% sensitivity and 89.6%
specificity using a 10-fold cross-validation. Most of the selected regions were well known degenerated brain regions
including cerebellar and visual cortices, but at the same time, our whole-brain connectivity analysis revealed new
regions not previously reported involving temporal and prefrontal cortices.

Conclusion: Our whole-brain connectivity approach provided information that seed-based analysis missed due to
its region-specific searching method. The high classification accuracy suggests that using resting state functional
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Background

Spinocerebellar ataxia 7 (SCA7) is an Autosomal Dominant
Cerebellar Ataxia (ADCAs) caused by the expansion of the
cytosine-adenine-guanine (CAQ) trinucleotide in the codon
region of the chromosome 3p2l1 encoding the protein
ataxin 7 [1]. SCA7 is considered one of the rarest forms of
genetic ADCAs [2]. Clinically, SCA7 is characterized by the
combination of cerebellar ataxia and macular degeneration
and is the only spinocerebellar ataxia that causes perman-
ent blindness [3-5]. The brain degeneration associated with
SCA7 has been relatively well documented, featuring severe
neuronal loss in a broad range of cerebellar and cerebral
regions [6-11]. Previous work using resting state fMRI
(rsfMRI) to explore the effect of such degeneration on the
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pattern of functional connectivity found hyper/hypo con-
nectivity changes between degenerate and non-degenerate
areas [12].

By measuring the temporal synchronization among
distant brain areas, the rsfMRI technique [13] proves to be
a powerful tool for delineating the brain’s functional con-
nectivity and has been successfully applied to study func-
tional disruption patterns of intrinsic neural networks in
various neurodegenerative disorders [14,15]. These abnor-
mal patterns can be helpful for improving our understand-
ing of the pathophysiological mechanisms underlying
neurodegenerative disorders and might represent a
possible functional biomarker to measure the effects of
putative therapeutic approaches. Using different methods,
several studies have used this new information to classify
brain disorders such as Alzheimer’s disease, mild cognitive
impairment, major depression and autism, among others
[16-20]. In recent years, there has been an increasing
interest in using multivariate pattern analysis methods to
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distinguish patients from healthy controls by means of
structural or functional brain images [16,21-26], where the
use of support vector machines (SVM) [27] arises as the
most popular classifier due to its good performance and
reliability against noise [18,28].

In this study, we systematically delineated the functional
changes associated with SCA7 using a whole-brain ap-
proach in 26 SCA7 patients. Then, we used the abnormal
pattern of functional connectivity as a classification feature
to discriminate between patients and healthy controls.
Based on our previous work [12], we expected that the
most discriminative functional connections would be be-
tween the cerebellum and the visual and motor cortices,
however, a whole-brain approach could reveal new infor-
mation about other brain regions not explored before.

Results

Abnormal functional connections

Nineteen abnormal functional connections met our thresh-
old criteria. These included regions in the bilateral cerebel-
lum, inferior/middle/superior temporal gyri, left precuneus,
left occipital gyrus, left fusiform gyrus and inferior/middle/
superior frontal gyrus (Table 1 and Table 2). The most af-
fected functional connections in SCA7 were a hypoconnec-
tivity between the right cerebellum crus II and the left
middle frontal gyrus and a hyperconnectivity between the
left superior temporal pole and the right inferior frontal
gyrus in the triangular part. See Figure 1 for a representa-
tive image of selected connections. Moreover, our analysis
revealed a synchrony decrease within the cerebellar cortex
and between cerebellar and frontal regions, as well as a syn-
chrony increase between temporal and several brain regions
including precuneus, hippocampus and middle occipital
and inferior frontal gyri (Table 3). The connection between
the left middle frontal gyrus and the right superior frontal
gyrus showed a negative correlation with the Scale for the
Assessment and Rating of Ataxia (SARA) score and the
symptoms onset (Additional file 1: Figure S1).

Classification results

Performance metrics reported high classification accur-
acy. After training the SVM classifier using the 19
abnormal functional connections previously selected, the
classification accuracy reached 92.3% with 95% sensitiv-
ity and 89.6% specificity in a 10-fold cross validation.

Discussion

In this work we explored the whole-brain functional con-
nectivity in a large SCA7 population and demonstrated that
patients can be distinguished from healthy controls using
resting state fMRI with an excellent classification accuracy
and sensitivity (92.3%, 95%). Moreover, our results showed
that the majority of the abnormal functional connections
used for classification involved regions commonly affected
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Table 1 Demographic information of SCA7 group

ID Age Gender Yearsof symptoms CAG expansion SARA
P01 40 F 21 50 27
P02 44 F 6 44 9
PO3 68 F 1 50 6
P04 43 F 21 47 15
PO5 42 F 17 47 29.5
P06 18 M 15 50 19.5
P07 39 F 23 50 27
Pog 18 F 4 53 7
P09 19 M 7 71 29.5
P10 34 M 10 55 17
P11 35 M 14 52 16
P12 64 M 10 43 14.5
P13 47 M 6 50 13
P14 23 M 3 61 125
P15 52 M 7 46 12
P16 44 M 4 48 1"
P17 40 F 13 55 23
P18 60 M 6 45 16
P19 54 M 6 43 24
P20 45 F 7 44 12
P21 35 F 1 42 8.5
P22 21 F 1 46 4
P23 20 M 1 48 4
P24 30 M 6 48 12
P25 61 M 7 41 105
P26 29 M 7 48 26

by SCA7 [12], including, the cerebellar and visual cor-
tex. However, our analysis also found changes in regions
not previously reported as the bilateral inferior/middle
temporal gyri, right hippocampus and the triangular/
opercular parts of the inferior frontal gyrus. This new
information is relevant to better understand the degenera-
tive process of SCA7. Furthermore, changes in functional
connectivity might be used as potential biomarkers to test
drugs that could prevent or decrease this process in the
early-stage patients.

Disruption of fronto-cerebellar network

In our previous work we found a correlation between the
CAG expansion and the functional connectivity between
the anterior cerebellum and the left superior frontal gyrus
[12]. In that work we used a seed-based approach focused
in the most degenerated regions. However, this approach
restricted the search to a few specific areas. The whole-
brain approach used here expands the search thorough
the brain revealing a set of connections showing decreased
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Table 2 Functional connections showing abnormal connectivity pattern in SCA7
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Automated anatomical labeling brain regions P-value Abnormality
Right cerebellum crus Il Left Middle Frontal Gyrus 0.00005 Decrease
Left superior temporal pole Right Inferior Triangular Frontal Gyrus 0.00005 Increase
Right cerebellum 10 Right Cerebellum 3 0.00011 Decrease
Left cerebellum 9 Left Fusiform Gyrus 0.00016 Increase
Left inferior temporal gyrus Left Precuneus 0.00023 Increase
Right cerebellum crus Il Left Inferior Triangular Frontal Gyrus 0.00027 Decrease
Left middle temporal pole Right Hippocampus 0.00034 Increase
Right middle temporal gyrus Right Middle Occipital Gyrus 0.00034 Increase
Left cerebellum crus Il Left Middle Frontal Gyrus 0.00048 Decrease
Left cerebellum 9 Left Inferior Occipital Gyrus 0.00048 Increase
Left middle frontal gyrus Right Superior Frontal Gyrus 0.00050 Increase
Left cerebellum 9 Right Superior Frontal Gyrus 0.00053 Decrease
Vermis 3 Right Cerebellum 10 0.00055 Decrease
Right inferior temporal gyrus Left Precuneus 0.00060 Increase
Left superior temporal pole Right inferior Opercular Frontal Gyrus 0.00062 Increase
Right cerebellum 7 Left Middle Frontal Gyrus 0.00065 Decrease
Left cerebellum 7 Left Inferior Occipital Gyrus 0.00069 Increase
Left cuneus Left Inferior Frontal Gyrus 0.00069 Decrease
Left cerebellum 9 Right Medial Superior Frontal Gyrus 0.00094 Decrease

synchrony between the cerebellum and the frontal cortex.
It is well known that frontal regions are involved in motor
control and planning [29-31] which also play an important
role in the integration of sensory and mnemonic informa-
tion, as well as regulation of intellectual function and
action [32,33]. Particularly, reduction in the metabolism of
inferior/middle frontal gyri has been associated with loss
of speech production, resulting in dyspraxia and dysarthria
[34]. Additionally, these regions were also reported to be
related to readiness and showed activity increase before
the execution of self-initiated motor acts [35]. The wide-
spread synchronicity decrease observed between the cere-
bellum and the frontal cortex suggests a communication
disruption within the fronto-cerebellar network. Future
studies should explore if the disruption of this connectivity
contributes to the motor and cognitive impairments
observed in these patients.

Increase in synchrony in temporal lobes

Hyperconnectivity was found in temporal regions includ-
ing inferior/middle/superior gyri. Several studies have in-
dicated the involvement of inferior temporal cortices and
precuneus in object and spatial vision [36,37] whose ab-
normal functioning could produce specific disruptions in
visually guided movements [38]. Moreover, the hippo-
campus and prefrontal regions also have been related
with visual working memory [39]. Besides, these areas
are also involved in language processes such as

comprehension of complex semantics and encoding of
concrete words [40-42]. Given previous reports that an in-
crease in functional connectivity may allow structurally
damaged brain regions to remain functional [43-45], the
enhanced connectivity involving the multi-sensory inte-
gration regions observed in this study may reflect a com-
pensating effort for the visual loss and/or speech deficits
associated with SCA7 [46].

Classification of functional connectivity

Multivariate classification of functional connectivity is
gaining popularity due to good outcomes in discriminating
between patients and healthy volunteers [21-26]. In this
exploratory analysis we parcellated the brain by using the
Automated Anatomical Labeling atlas (AAL) [47], dividing
it into 116 regions based in the brain cytoarchitecture.
This allowed us to retrieve the regional functional con-
nectivity across the whole-brain. A possible issue resulting
from this parcellation could be the size differences across
regions. However, given the exploratory nature of this
analysis, the good classification accuracy that we ob-
tained, and the great acceptance of this atlas we believe
that its use was appropriate. A different parcellation
using isometric regions would mix signals from differ-
ent anatomical regions, and would also increase the
number of regions and therefore the noise/signal ratio.
In the same way, several techniques have been proposed
for the feature selection stage [48]. Our choice was simple
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Figure 1 Highest differences between patients with SCA7 and healthy controls. Nodes represent the AAL regions involved in each of 19
abnormal functional connections. Node color indicates the anatomical location and line color indicates the abnormality. Row a) shows the
connection with decreased functional connectivity, row b) shows the connections with increased functional connectivity and row ¢) indicates
two connections showing the higher differences between SCA7 and healthy control (p < 0.0001, see Table 1). Note that for side views translucent

nodes are located in the opposite hemisphere.

but reported good classification levels (92.3% accuracy and
95% sensitivity), demonstrating that the connections se-
lected were highly discriminating of this disease. Future
work to classify between different types of spinocerebellar
ataxia would require a finer parcellation and comprehen-
sive feature selection.

Limitations

In this work we used a univariate approach as a feature
selection method to select a small number of high dis-
criminative abnormal connections across the patient’s
brain. The selected subset of connections reached high
classification accuracy between patients and healthy
controls, proving their high discriminative power. How-
ever, this approach is limited by its own nature, compar-
ing voxel by voxel. Different alternatives try to address
this problem using multivariate approaches as principal
component analysis and Independent component Ana-
lysis among others. These multivariate methods convert
multidimensional vectors into statistically independent
components, assuming that the number of component
representing the data are less than the original dimen-
sionality reducing the data space by discarding the com-
ponents with high variance [48,49]. However, and due to

this study design and the well-defined structural degener-
ation in SCA7 we choose to use the univariate approach.
Another limitation is the lack of significant correlation
with behavioral scores. Only one connection showed a sig-
nificant correlation between the functional connectivity
and SARA and symptoms onset. There were no significant
correlations between these variables and other connec-
tions, but there were trends. This outcome can be associ-
ated to several variables, for an instance, changes in
connectivity appears early in the disease progression and
are followed by structural degeneration in a slow fashion
[50,51], these difference in the velocity of the progressive
degeneration could affect the correlation between vari-
ables. Taking into account that SARA score measures the
motor impairments as a result of cerebellar dysfunction,
and these changes develop slowly compared with the con-
nectivity changes, the absence of a good correlation be-
tween those variables is not surprising. Something similar
could have happened with the CAG expansion and the
symptoms onset. In future work we will address those is-
sues by analyzing longitudinal data of the same group of
patients and by using multivariate approaches as well
as behavioral/clinical data, in order to better describe
changes of functional connectivity over time.
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Table 3 SCA7 abnormal functional connections sorted by anatomical regions
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Automated anatomical labeling anatomical regions Abnormality
Vermis 3 Right Cerebellum 10 Decrease
Right cerebellum 10 Right Cerebellum 3 Decrease
Left cerebellum 9 Left Fusiform Gyrus Increase
Left cerebellum 9 Left Inferior Occipital Gyrus Increase
Left cerebellum 7 Left Inferior Occipital Gyrus Increase
Right cerebellum 7 Left Middle Frontal Gyrus Decrease
Right cerebellum crus II Left Inferior Triangular Frontal Gyrus Decrease
Right cerebellum crus Il Left Middle Frontal Gyrus Decrease
Left cerebellum crus Il Left Middle Frontal Gyrus Decrease
Left cerebellum 9 Right Medial Superior Frontal Gyrus Decrease
Left cerebellum 9 Right Superior Frontal Gyrus Decrease
Right inferior temporal gyrus Left Precuneus Increase
Left inferior temporal gyrus Left Precuneus Increase
Left middle temporal pole Right Hippocampus Increase
Right middle temporal gyrus Right Middle Occipital Gyrus Increase
Left superior temporal pole Right Inferior Triangular Frontal Gyrus Increase
Left superior temporal pole Right inferior Opercular Frontal Gyrus Increase
Left inferior frontal gyrus Left Cuneus Decrease
Left middle frontal gyrus Right Superior Frontal Gyrus Increase

Bold rows indicate decreased connectivity.

Conclusion

The use of functional connectivity measurements is a
powerful tool that helps in the discrimination of neurode-
generative diseases. In this work, we demonstrated that by
using whole-brain functional connectivity to classify SCA7
patients and healthy controls, a 92.3% precision accuracy
was reached. At the same time our results indicate that
SCA7 patients are losing synchrony within the cerebellum
and between the cerebellum and different cerebral regions,
like the frontal cortices. Besides, the increasing synchrony
of the multi-sensory integration regions might reflect a
compensatory mechanism against neurodegeneration in
motor and visual systems. This outcome provides novel
and relevant information about the functional changes
underlying the degenerative process of SCA7 and can
be helpful to better understand this rare disease. More
research comparing the functional connectivity between
different types of spinocerebellar ataxias will help to
understand the neurodegenerative idiosyncrasies of
each particular type.

Methods

Subjects

Twenty six patients with a molecular diagnosis of spino-
cerebellar ataxia type 7 [52] participated in this study (11
female, mean age 39.4, complete information for each pa-
tient is provided in Table 1). The control group consisted
of 26 age- and gender-matched normal controls in absence

of any neurological diseases or psychiatric disorders. Motor
impairment of patients was tested using the Scale for the
Assessment and Rating of Ataxia (SARA) [53]. All proce-
dures were conducted in accordance with the international
standards laid down in the 1964 Declaration of Helsinki
carried out by the Institutional Committees on human
experimentation. All participants gave written, informed
consent before entering the study.

Image acquisition

Images were acquired at the Instituto Nacional de Psiquia-
tria “Ramon de la Fuente Muniz” using a 3.0 T Achieva
MRI scanner (Phillips Medical Systems, Eindhoven,
Holland). The anatomical acquisition consisted of a 3D T1
Fast Field-Echo sequence, with TR/TE =8/3.7 ms, FOV
256 x 256 mm and an acquisition and reconstruction
matrix of 256 x 256, resulting in an isometric resolution
of 1 x 1 x 1 mm. Resting state fMRI images were collected
using Echo Planar Imaging (EPI) single shot sequence with
TR =2000 ms, TE = 35 ms, and 120 whole-brain volumes
with 34 slices. Final isometric resolution of rsfMRI images
was 3 x 3 x 4 mm without gaps. During functional MRI
acquisition, subjects in all groups were instructed to keep
their eyes closed, to think about nothing in particular,
and to stay awake. Five dummy scans were performed at
the beginning of each functional acquisition to allow
magnetization to reach a steady state.
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Resting state fMRI preprocessing

RsfMRI preprocessing included brain extraction, time shift-
ing, motion correction, spatial smoothing (6 mm full width
at half maximum Gaussian kernel), linear trend removal
and temporal filtering (band pass 0.01-0.08 Hz) using FSL
(FMRIB, Oxford University, UK). Nuisance sources of vari-
ance including white matter, CSE, and global mean signal
were removed using regression [54]. Moreover, to further
control motion artifacts, volumes with a threshold of signal
change < 0.5% and a frame-wise displacement < 0.5 mm was
discarded [55]. After rigid alignment of rsfMRI images to its
structural image for each subject, spatial normalization of
rsfMRI images to MNI template was achieved using the
transformation field acquired during the structural image
registration step [56-58]. Automated Anatomical Labeling
atlas (AAL) [47] was used to parcellate the whole brain into
116 regions (45 bilateral cortical regions, 9 bilateral cerebel-
lar regions and 8 vermis regions).

Whole-brain functional connectivity analysis

Using MATLAB R212b (The Mathworks, Inc.), the
mean time course of each AAL-defined region was
obtained and Pearson’s correlation coefficient was calcu-
lated between all pairs of regions over the entire brain.
A regional functional connectivity matrix was obtained
(116 x 116 symmetric matrix) independently for SCA7
patients and healthy controls. Two-tailed two-group
t-tests were performed for all pair-wise functional
connections between SCA7 group and normal controls
to detect whole-brain abnormal functional connections.
Is well known that reducing the number of classification
features accelerates computation and diminishes noise
[24,48,59]. To this end, we remove the 116 diagonal
values and only selected connections with a p value < 0.001
uncorrected in the lower triangular part of the symmetric
matrix. In this step the multiple comparison correction is
not required because this is just a feature selection method
for the classification step [18]. Finally, we used each con-
nection functional connectivity values and the behavioral
data (CAG expansion, symptoms onset and SARA) to
calculate the correlation between those variables.

Support vector machine classification

In order to discriminate between SCA7 group and healthy
controls we used the abnormal functional connections to
feed the SVM classifier (linear kernel and sequential min-
imal optimization). In order to test the performance of this
approach we used a cross-validation technique, in which,
the data is split in k-folds to test k times the classifier
using different instances to train and test. Classification
accuracy, sensitivity (percentage of patients correctly
classified) and specificity (percentage of controls correctly
classified) were calculated based on a 10 fold cross-
validation [48].
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Additional file

Additional file 1: Figure S1. Significant correlations between functional
connectivity and behavioral scores in the connections of left middle
frontal gyrus and the right superior frontal gyrus.
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