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onset, slow progression and saccadic
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Abstract

Background: Spinocerebellar ataxia type 28 (SCA28) is related to mutations of the ATPase family gene 3-like 2 gene
(AFG3L2). To date, 13 private missense mutations have been identified in families of French, Italian, and German
ancestry, but overall, the disorder seems to be rare in Europe. Here, we report a kindred of German ancestry with
four affected family members presenting with slowly progressive ataxia, mild pyramidal tract signs and slow
saccades.

Methods: After excluding repeat expansions in the genes for SCA1-3, 6-8, 10, 12, and 17, Sanger sequencing of the
coding regions of TTBK2 (SCA11), KCNC3 (SCA13), PRKCG (SCA14), FGF14 (SCA27) and AFG3L2 (SCA28) was performed.
The 17 coding exons of AFG3L2 with flanking intronic sequences were amplified by PCR and sequenced on both
strands.

Results: Sequencing detected a novel potential missense mutation (p.Y689N) in the C-terminal proteolytic domain, the
mutational hotspot of AFG3L2. The online programme “PolyPhen-2” classifies this amino acid exchange as probably
damaging (score 0.990). Similarly to most of the published SCA28 mutations, the novel mutation is located within exon
16. Mutations in exon 16 alter the proteolytic activity of the protease AFG3L2 that is highly expressed in Purkinje cells.

Conclusions: Genetic testing should be considered in dominant ataxia with pyramidal tract signs and saccadic
slowing.
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Background
The spinocerebellar ataxias (SCAs) represent a clinically
and genetically heterogeneous group of inherited neuro-
logical disorders with overlapping as well as highly variable
phenotypes characterised by progressive incoordination,
dysarthria and impaired eye movements. To date, more
than 30 genetic loci have been described [1]. Mutations
have been isolated in 20 genes, so far. Ten SCAs are caused

by repeat expansions while deletions, missense, nonsense or
frame shift mutations have been identified in the remaining
genes. The genetic locus for SCA28 had been mapped to
chromosome 18 in 2006 [2]. Meanwhile, 13 missense muta-
tions of theATPase family gene 3-like 2 gene (AFG3L2) have
been reported to cause ataxia [3–7]. In addition, homozy-
gous AFG3L2mutations were identified in a spastic ataxia-
neuropathy syndrome [8]. Here, we describe a family of
German ancestry carrying a novel AFG3L2mutation.

Results and discussion
Clinical findings
Onset was subtle with first symptoms not always indica-
tive for hereditary cerebellar ataxia: the 81 year old
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mother first noticed bilateral ptosis at the age of 55 that
worsened over time and required blepharoplastic sur-
gery. Patient 3 suffers from epilepsy with infrequent sei-
zures since adolescence.
Progression was usually slow with most patients

remaining ambulatory several decades after onset. Sac-
cadic slowing developed over time. For further clinical
details, see Table 1. MRI studies yielded isolated cerebel-
lar atrophy with intact brain stem and cortical struc-
tures. In two patients, there was evidence for additional
small-sized white matter lesions on T2 weighted MRI
images that could not be explained by vascular or in-
flammatory disease. Electrophysiological studies in pa-
tient 3 yielded normal motor and sensory nerve

conduction velocities and amplitudes (peroneal, tibial
and sural nerve).

Molecular genetic analysis
Sequencing revealed the heterozygous mutation
c.2065T>A in exon 16 of the AFG3L2 gene in all af-
fected family members. The mutation segregated with
the disease. On the amino acid level, this substitution re-
sults in the missense exchange p.Y689N.

Discussion
The clinical presentation in this kindred is highly com-
patible with the SCA28 phenotype with a slowly pro-
gressive cerebellar syndrome, hyperreflexia in the lower

Table 1 Clinical features

Patient 1 Patient 2 Patient 3 Patient 4

Sex F M F M

Age 81 61 59 53

Age of onset andFirst symptoms 55 ptosis + falls60 gait
disturbance

24 gait disturbance 16 seizures39 gait disorder no
subjectivecomplaints

Walking assistance (age) 65 60 50 −

Disease duration (from onset of gait
disorder to physical examination)

36 37 20 ?

MRI Nd Cerebellar atrophyDiscrete
white matter lesions(age 56)

Cerebellar atrophyDiscrete
white matter lesions(age 56)

Nd

Ataxia of stance and gait +++ ++ ++ +

Upper limb ataxia + + + +

Lower limb ataxia + + + +

Intention tremor − − − −

Dysarthria (+) ++ + +

Impaired smooth pursuit Cannot be evaluated due
to limitation of gaze

+ − +

Gaze evoked nystagmus horizontal Cannot be evaluated due
to limitation of gaze

+ − +

Impaired suppression of the
vestibuloocular reflex (VOR)

− − + −

Limitation of gaze Vertical completeHorizontal
incomplete

− − −

Saccadic slowing ++ − ++ −

Ptosis +++ − − −

VI paresis − − bilateral −

Dysphagia − + − −

Hearing loss + − − −

Deep tendon reflexes brisk brisk increased brisk

Extensor plantar responses − − − −

Spasticity − − − −

Impaired noci- and thermoception − − + +

Impaired vibration sense + + + +

Other symptoms − sleep apnea rare seizures −

SARA score [15] 11/40 11/40 19/40 8/40
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limbs (76 %) and saccadic slowing (50 %) [3, 4]. Saccadic
slowing has been considered a typical clinical feature
in SCA2 while pyramidal tract signs are usually ab-
sent [9, 10]. Regarding the small sample size, further
studies will be necessary to corroborate the combin-
ation of slow saccades and pyramidal tract signs as
core features of SCA28. Based on these findings, we
have actually suspected SCA28 in an individual with
early onset and slowly progressive ataxia, saccadic
slowing and pyramidal tract signs. Despite a negative
family history, molecular genetic testing has actually
revealed a SCA28 mutation described earlier by Di
Bella and coworkers [5]. Other less characteristic
features include ptosis (48 %) and impaired proprio-
ception (45 %) [3, 6]. Behavioural abnormalities and
cognitive impairment have been observed in some
patients. SCA28 symptoms usually start in early
adulthood (mean 39 years, SD 13) with a wide range
from 3 to 60 years. Actually, the age of onset seems
to depend on the individual mutation [3, 4, 6].
The AFG3L2 gene, mutated in SCA28, is composed

of 17 exons coding for a protein of 797 amino acids
with different functional domains: an AAA consensus
sequence together with an ATP/GTP-binding site, a
peptidase M41 domain containing the HEXXH motif
which is a characteristic feature of a zinc-dependent
binding domain, and a RNA-binding region [11].
AFG3L2 is highly homologous to paraplegin, the
product of the SPG7 gene. Mutations in the SPG7
gene are responsible for a subtype of hereditary spas-
tic paraplegia (HSP) [12]. Both, AFG3L2 as well as
paraplegin are metalloproteases of the AAA-
superfamily; as components of the two mitochondrial
AAA (m-AAA) protease isoenzymes in the inner
mitochondrial membrane they are involved in the
degradation of non-assembled membrane proteins as
well as in the activation of mitochondrial proteins
[13]. Notably, 12 of 13 published SCA28 mutations
correspond to missense exchanges with 11 mutations
being located within exon 16 which contributes to
the peptidase M41 domain [4–7]. They alter the pro-
teolytic activity of the protease AFG3L2 that is highly
expressed in Purkinje cells [5]. The resulting mito-
chondrial impairment might account for the clinical
similarities of SCSA28 and SPG7 with mitochondrial
disorders. Two or even three different mutations af-
fecting amino acids at positions 666, 671, and 689
have been identified in SCA28 patients to date. The
variation p.Y689N (c.2065T>A) present in our family,
is not listed in the integrated map of genetic variation
from 1092 human genomes (1000genomes.org). Inter-
estingly, another mutation affecting the tyrosine resi-
due at position 698 (p.Y689H) has recently been
identified in another SCA28 patient [7].

Conclusion
Based on these findings, the missense mutation p.Y689N
is likely to have a pathogenic impact on the SCA28
phenotype. This assumption is supported by the strong
conservation of tyrosine (Y) at position 689 e.g. in mon-
key, mouse, dog, elephant, opossum, chicken and zebra-
fish (UCSC Genome Browser, hg19). Furthermore, the
online programme “PolyPhen-2” classifies this amino
acid exchange as probably damaging (score 0.990).

Methods
Subjects
Clinical data and blood samples were obtained in four
affected individuals (mother: patient 1, three of four chil-
dren: patients 2 to 4, details see Table 1) and one un-
affected sibling (57 years at examination, SARA score 0/
40, personally examined by DT). The study was approved
by the Institutional review board of University of Lübeck.

Genetic analysis
After having obtained informed consent, genomic DNA
was extracted from peripheral blood leukocytes by
standard protocols. According to the EFNS guidelines
[14] prior to sequence analysis, expansions at the loci for
SCA1, 2, 3, 6, 7, 8, 10, 12, and 17 were excluded. Add-
itional Sanger sequencing of the coding regions of
TTBK2 (SCA11), KCNC3 (SCA13), PRKCG (SCA14),
and FGF14 (SCA27) identified only known polymor-
phisms and SNPs. For AFG3L2, the 17 coding exons
with flanking intronic sequences were also amplified by
PCR and sequenced on both strands. Pathogenic muta-
tions in SPTBN2 (SCA5), KCND3 (SCA19/22), PDYN
(SCA23), and ITPR1 (SCA29) genes have not tested in
this kindred but a pathogenic impact appears less likely
for one of these genes with respect to phenotype charac-
teristics and geographical restrictions (at least in some of
these genotypes).

Data bases
Ensembl AFG3L2 ENSG00000141385, transcript
ENST00000269143. HGMD biobase: www.hgmd.cf.a-
c.uk; UCSC genome browser: http://genome.ucsc.edu;
1000 genomes: www.1000genomes.org; PolyPhen-2–pre-
diction of functional effects of human nsSNPs: http://
genetics.bwh.harvard.edu/pph2/.
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