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Abstract

Background: Friedreich’s ataxia is an autosomal recessive, severely incapacitating disorder. There is little objective
evidence regarding FRDA management. Abnormalities in the insulin/insulin-like growth factor 1 (IGF-1) system (IIS)
signalling pathway were thought to play a role in the physiopathological processes of various neurodegenerative
disorders, including spinocerebellar ataxias. The objective of the study was to test the safety, tolerability, and
efficacy of therapy with IGF-1 in Friedreich’s ataxia (FRDA) patients in a clinical pilot study.

Results: A total of 4 females and 1 male were included in the study; 23 to 36 years of age (average 26.6 ± 5.4),
diagnosed with FRDA with normal ventricular function. Patients were treated with IGF-1 therapy with 50 μg/kg twice a
day subcutaneously for 12 months. The efficacy of this therapy was assessed by changes from baseline on the scale
for the assessment and rating of ataxia, (SARA) and by changes from baseline in echocardiogram parameters. The
annual worsening rate (AWR) was estimated in this series as a SARA score of −0.4 ± 0.83 (CI 95%: −1.28 to 0.48) SARA
score, whereas the AWR for our FRDA cohort was estimated as a SARA score of 2.05 ± 1.23 (CI 95%: 1.58 to 2.52).
Echocardiographic parameters remained normal and stable.

Conclusion: Our results seem to indicate a benefit of this IGF-1 therapy to neurological functions in FRDA.
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Background
Friedreich’s ataxia (FRDA; OMIM 229300) is an autosomal
recessive, severely incapacitating disorder. It involves the
central and peripheral nervous system and the heart and
has a major influence on the lives of affected individuals.
Neurological symptoms are characterised by progressive
gait instability, limb and trunk ataxia, dysarthria, decreased
vibration and joint position senses, absent or reduced
tendon reflexes, corticospinal tract signs, and weakness
[1-3]. Patients with FRDA usually show ataxia, dysarthria
and scoliosis around the time of puberty, late in the 1st
decade or early in the 2nd decade (range 2 to > 70 years).
Slow progression occurs with patients confined to a
wheelchair after 15 years on average (ranging from a
few years to decades) [4]. Life expectancy is reduced to
an average of 38 years [5] (range: 21 to 69 years), with
cardiomyopathy the most frequent cause of death. Only
one locus has been recognised, which has been mapped
to chromosome 9q13 [6]. The expanded GAA repeat
* Correspondence: jarpag@ctv.es
1Reference Unit of Hereditary Ataxias and Paraplegias, Department of
Neurology, IdiPAZ, Hospital Universitario La Paz, 28046 Madrid, Spain
Full list of author information is available at the end of the article

© 2014 Sanz-Gallego et al.; licensee BioMed C
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
Domain Dedication waiver (http://creativecom
article, unless otherwise stated.
results in inhibition of FRDA gene expression, as well as
in a deficiency in FXN transcript levels, and ultimately
in a deficiency of frataxin protein. Some 98% of patients
are homozygous for GAA repeat expansions, and the
remaining 2% are compound heterozygous for an expanded
allele and a point mutation within the coding sequence
of the gene [7,8]. Point mutations predicting a truncated
frataxin and missense mutations have been reported
[6,9-16]. Reduced frataxin expression, in turn, results in
deficient assembly of iron–sulphur clusters, abnormal
accumulation of intramitochondrial iron, elevated oxida-
tive stress and impaired cellular energy production [8].
There is little objective evidence regarding FRDA

management. Antioxidant therapy by free-radical scav-
engers including coenzyme Q10 and vitamin E [17-19]
and idebenone (a short-chain analogue of coenzyme Q10)
[20-24] and chelation therapy [25-27] have been considered
potential treatments for slowing the progression of FRDA
in some studies, but not in others [17,28-30]. Triple therapy
with darbepoetin alpha, idebenone, and riboflavin may slow
FRDA disease progression [31]. The results of triple therapy
with deferiprone, idebenone and riboflavin seem to indicate
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some uncertain benefit to neurological and heart functions
in FRDA [32].
The insulin-like system plays important metabolic,

trophic, and modulatory functions in the central nervous
system (CNS), increasing cell proliferation, survival and
antiapoptotic responses [33-35]. Abnormalities in the
insulin/insulin-like growth factor 1 (IGF-1) system (IIS)
signalling pathway were thought to play a role in the
physiopathological processes of various neurodegenerative
disorders, including Alzheimer’s disease, spinocerebellar
ataxias (SCAs) and Huntington disease (HD) through
various mechanisms [33,34,36].
These findings led to the design of the clinical pilot

study described here. The primary aim of this study was
to evaluate the safety and tolerability of IGF-1 therapy
in patients with FRDA. The secondary objective was to
evaluate the efficacy of IGF-1 therapy for the treatment
of FRDA patients. A third objective was to evaluate the
effect of this therapy on cardiac function.

Results
Patients included in this study were 4 females and 1 male,
23 to 36 years of age (average 26.6 ± 5.4), diagnosed with
FRDA with confirmed GAA repeat expansion mutations in
the FXN gene and a GAA repeat ≥ 400 on the shorter allele,
and disease duration of 9.4 ± 5.5 years. Each patient was
treated with current, long-term Idebenone 20 mg/kg/day.
Demographic and clinical variables of the 5 study patients
are shown in Table 1. Patients had a baseline score between
9 and 21.5 (average 15.2 ± 4.8) on the scale for the assess-
ment and rating of ataxia (SARA) [37]. The patients were
treated with IGF-1 (mecasermin, Increlex®; Ipsen-Pharma)
50 μg/kg twice a day subcutaneously for 12 months.

Safety and tolerability
In general, IGF-1 was well tolerated by the patients with
FRDA. There were no remarkable changes from baseline
in vital signs. The 26-year-old man showed an unknown
GH-secreting pituitary adenoma without acromegaly,
whose MRI showed an intrasellar mass at the end of
study non-present in baseline MRI. However, this tumour
could have already been subclinically present at the
beginning of the IGF-1 treatment, because his baseline
level of IGF-1 was 3.279 ng/ml (N = <2.5).

Treatment adherence
We also found a significant increase in serum IGF-1
levels during the therapy period when compared with
baseline. Confidence interval calculated for the mea-
sure of adherence is not included within the limits of
upper and lower bounds of the CI at baseline, except
four-month period 2. Therefore, the adherence to
IGF-1 therapy was high (Figure 1). The variations in
serum IGF1 levels could be due to a variable time
period between blood sample extractions and subcuta-
neous IGF-1 injections. Nevertheless, the IGF-1 levels
during therapy were always higher than the baseline
levels.

Efficacy
SARA
Statistical stabilisation of ataxia as evaluated by the SARA
score was observed from the first quarter of the study
(Figure 2). The annual worsening rate (AWR) was esti-
mated in this series as −0.4 ± 0.83 (CI 95%: −1.28 to 0.48)
SARA score, whereas the AWR for our FRDA cohort was
estimated as a SARA score of 2.05 ± 1.23 (CI 95%: 1.58 to
2.52) (Table 2). Confidence interval calculated for the
measure of treatment effect is not included within the
limits of upper and lower bounds of the CI control, which
would seem to indicate a decrease in the progression of
the disease with IGF-1 therapy.
We observed a certain rebound effect with significant

worsening one year after the end of the trial (p < 0.03),
with return to the previous AWR two years after the
end of the study.
Moreover, in the mixed-effects model, each individual’s

vector of responses is modelled as a parametric function,
whereas some of the parameters or “effects” are random
variables with a multivariate normal distribution. Estimates
of Fixed Effects in our series indicate that the variability in
the basal score influences individual evolution (p < 0.01).

Cardiac function
Septal wall thickness (SWT), and posterior wall thick-
ness (PWT), measured at end-diastole from M-mode
recordings in a longitudinal parasternal view [38], Left
Ventricular Shortening Fraction (LVSF), Left Ventricular
Ejections Fraction (LVEF), and Left Ventricular Mass
Index (LVMI,) of these patients were normal at baseline.
At the end of the study 142 period, all of these parame-
ters remained normal in all participants.

SF-36v2
Patient satisfaction with IGF-1 therapy was measured
using the SF-36v2 [39]. Of the 5 patients, 40% were
dissatisfied; satisfaction was fair in 60% and poor in 0%
during a limited time in terms of physical and mental
components of SF36v2 (Table 1).

Limitations of the study
This was an open-label study, with a limited number of
patients (only 5), with a potentially significant initial
placebo effect, and variability in the baseline scores that
could have influenced individual evolution. A double-
blind placebo-controlled could not be carried out because
of IPSEN PHARMA, sole manufacturing and distribution’
company of IGF-1, communicated us that it has been



Table 1 Demographic and clinical characteristics of this series of FRDA patients

Patients Age Gender Disease
duration

Initial
SARA

GAA
repeats

ECG Initial
LVMI (g/m2)

IGF-1
therapy (dose)

Follow-up Therapy
withdrew

Adverse events SF36v2:

PC: Physical component

MC: Mental component

Patient 1 23 F 12 18 >800 Widespread inferolateral
T-wave inversion

Normal 50 μg/kg bid 3 four-month period Four-month
period 3

None PC: feeling fair

MC: feeling fair

Patient 2 24 F 14 21.5 >500 Widespread inferolateral
T-wave inversion

Normal 50 μg/kg bid 3 four-month period Four-month
period 3

None PC: feeling better

MC: feeling better

Patient 3 26 M 4 13 >500 Widespread inferolateral
T-wave inversion

Normal 50 μg/kg bid 3 four-month period Four-month
period 3

GH-secreting
pituitary adenoma

PC: No change

MC: No change

Patient 4 36 F 14 14.25 >500 Normal Normal 50 μg/kg bid 3 four-month period Ongoing None No change during therapy
period, later worsening

Patient 5 24 F 3 9 >500 Widespread inferolateral
T-wave inversion

Normal 50 μg/kg bid 3 four-month period Four-month
period 3

None PC: No change

MC: No change
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IGF-1 levels (ng/ml)

Baseline Four-month
period 1

Four-month
period 2

Four-month
period 3

Mean ± SD 1.82±0,83 4.62±1,15 3.51±2,61 4.24±1,52

n 5 5 5 5

CI (95%) 1.09 – 2.54 3.61 – 5.62 1.23 – 5.79 2.91 – 5.57

Figure 1 Adherence: Significant increase in serum IGF-1 levels during the therapy period when compared with baseline.
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forced to suspend, not only the production, but also
the distribution of IGF-1. For which reason, we have
had to cancel this kind of clinical trial that we had
already approved and funded.

Discussion
Exogenous trophic factors (GDNF and/or IGF-1) can
delay the onset of hereditary Purkinje cell degeneration
and gait ataxia in shaker mutant rats characterised by
spatially restricted degeneration of cerebellar Purkinje
neurons from adult-onset heredodegeneration [40].
Serum levels of insulin and insulin-like growth factors

and their binding proteins (IGFs and IGFBPs, respectively)
are changed in human neurodegenerative diseases of
very different etiologies, such as Alzheimer’s disease,
amyotrophic lateral sclerosis, or cerebellar ataxia [41].
Two types of late-onset cerebellar ataxias (olivoponto-

cerebellar and idiopathic cerebellar cortical atrophy)
show low IGF-I levels in the blood, high levels of IGF-
binding protein 1 (IGFBP-1) and IGFBP-3 affinity for
IGF-1 [42].
Both ataxic animals as well as human patients show

altered serum IGF-1 levels. However, the pathogenic
significance of IGF-1 in this varied group of diseases is
difficult to envisage. Disrupted IGF-1 neuroprotective
signalling may constitute a common stage in the patho-
logical cascade associated with neuronal death. Treatment
with IGF-1 has proven effective in neurotoxic and trans-
genic animal models of ataxia [43-45].
In transgenic animal models of other polyQ disorders,

there was also evidence of the involvement of signalling
components of the IIS in the modulation of mutant pro-
teins and disease phenotype [46,47].
In two mouse models of SCA1 and SCA7 that express

the glutamine-expanded protein from the respective
endogenous loci, transcriptional changes were found, with
down-regulation of IGF binding protein 5 (IGFBP5) repre-
senting one of the most robust changes [48].
Two very different inherited neurodegenerative condi-

tions, ataxia-telangiectasia (AT) and Charcot-Marie-Tooth
1A (CMT-1A) disease, serum levels of IGFs are also altered.
Both types of patients have increased serum IGF-1 and
IGFBP-2 levels, and decreased serum IGFBP-1 levels, while
only AT patients have high serum insulin levels [41].
AT and FRDA patients, who show cumulative DNA

damage, may also show disturbed IGF-1 function [49].
DNA damage is known to reduce IGF-1 activity [50].
On clinical grounds, altered serum levels of IGF-1 and

IGF-1 binding proteins (IGFBPs) have been reported in
patients with late onset cerebellar ataxia (LOCA) [43].
IGF-1 has therapeutic effects in various types of cerebellar
ataxia [51] and exerts protective actions on mitochondrial
function.
IGF-1 normalised frataxin levels in frataxin-deficient

neurons and astrocytes through its canonical Akt/mTOR
signalling pathway, and significantly increased levels of
frataxin in cardiomyocites from conditional FRDA mouse
mutants. IGF-1 normalised motor coordination in the
moderately FRDA-like transgenic mice (YG8R mice) [49].
IGF-1 treatment has been tested in clinical trials for

various disorders [52-54] and, with the exception of the
early clinical studies, which utilised very high doses of



Figure 2 Patients’ evolution as evaluated by the Scale for the Assessment and Rating of Ataxia (SARA).
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IGF-1 that induced transient hypoglycemia, no significant
adverse effect was reported.
Ventricular dysfunction was an exclusion criterion to

avoid a bias in the evaluation with SARA. Since struc-
tural cardiovascular derangements are associated with
an increased risk of developing heart failure including
left atrial dilatation and dysregulation of breathing in
chronic heart failure (CHF) might involve changes of
control at several levels, ranging from peripheral ergoreflex
Table 2 Annual Worsening Rate (AWR)

FRDA patients N Annual
worsening rate

CI 95%

Baseline – 3rd

four-month period (AWR)
5 −0.40 ± 0.83 −1.28 to 0.48

Control 99 2,05 ± 1,23 1,58 to 2,52
activation and peripheral chemosensitivity, through abnor-
mal autonomic reflexes to an altered central command,
ventricular dysfunction was rule out in our patients. It
has been suggested a reduction in reactivity of the cere-
bral circulation in CHF. Such altered reactivity might
contribute to the generation of symptoms and/or the
autonomic dysfunction found in CHF [55]. In consequence,
the dysfunction of the nervous system induced by CHF
could influence in the patient’s achievement as evaluated
by the SARA score.
We have observed a certain decrease in the progression

of the disease with IGF-1 therapy. However, 3 patients
started to rise on SARA score about the end of the period
of treatment. Hence, we think that IGF-1 cannot prevent
the evolution of FRDA completely, but only significantly
reduces the progression of FRDA.
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The worsening observed, as rebound phenomenon after
the end of the study, could be interpreted as damage from
the cellular function because of withdrawal of the IGF-1
therapy.

Conclusions
Beneficial effects seem to be observed with IGF-1 therapy
in this study in terms of neurological improvement in
these FRDA patients, as measured by both SARA and
SF-36v2 scales. A decrease in the progression of their
neurological disease was observed, together with long-term
stability of the cardiac function as evaluated by echocardio-
graphic parameters. However, we cannot assume in our
cases a definitive influence on the maintenance of the heart
normal function. Overall, the results of this IGF-1 therapy
in our patients are better than other studies. This seems to
indicate certain benefit to neurological and heart functions
through this IGF-1 therapy in FRDA.
In the future, dosing could be changed from the con-

ventional twice a day to once every 2 weeks by mean of
IGF-1 microsphere therapy [56].
Further studies with more patients and double-blind

placebo-controlled studies are necessary to correctly evalu-
ate the possible effectiveness of IGF-1.

Methods
All participants provided written informed consent to par-
ticipate in this Institutional Ethics Committee on Clinical
Research-approved, open-label trial. Five FRDA patients
were identified from the Unit of Hereditary Ataxia and
Spastic Paraplegia of the Hospital Universitario La Paz
(Madrid, Spain). Before their inclusion, an echocardio-
graphic study was carried out to rule out ventricular
dysfunction, irrespective of whether or not they had left
ventricular hypertrophy. The patients were treated with
IGF-1 (mecasermin, Increlex®; Ipsen-Pharma) 50 μg/kg
twice a day subcutaneously for 12 months. The follow
up was 2 years after the end of treatment.

Study assessments
Baseline clinical characteristics were recorded, including
age, gender, height, weight, and blood pressure, medical
history and medications.
The primary objective of this study was to evaluate the

safety and tolerability of IGF-1 therapy in patients with
FRDA. Patient safety and the tolerability of the treatment
were assessed four-monthly through reports on adverse
events/adverse drug reactions, serious adverse events/
serious adverse drug reactions, physical examinations,
ECG, results of haematology, and blood chemistry analyses.
The secondary objective was to evaluate the efficacy of
therapy with IGF-1 for the treatment of FRDA, as assessed
by changes from baseline in SARA [37] and SF-36v2 scores
[39]. The third objective was to evaluate the effect of this
therapy on cardiac function, as measured by the change
from baseline in SWT, and PWT, measured at end-diastole
from M-mode recordings in a longitudinal parasternal view,
in LVSF, LVEF, and LVMI using echocardiogram [38].

Statistical analyses
Safety analyses were performed on the safety intent-to-
treat (ITT) population, which was defined as patients
who were selected and had received at least one dose of
the allocated drugs. Efficacy analyses were performed on
the per protocol (PP) population, defined as patients
who had completed at least one year in the study and
had no major protocol violations.
For the efficacy parameters, to compare the change

from baseline to post-baseline visits, non-parametric
Wilcoxon-Mann–Whitney tests were used.
Evolution over time was studied (quarterly) using Linear

Mixed Effects Models for the adjustment of correlations
caused by repeated measurements, made on the same stat-
istical units (longitudinal study), to determine the quarterly
rate of change with a confidence interval at 95%.
Previously, we had determined that in 99 patients with

FRDA the mean ± SD 1-year worsening of the cohort on
SARA was 2.05 ± 1.23 points.
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