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Peripheral nerve axonal excitability studies:
expanding the neurophysiologist’s armamentarium
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Abstract

Nerve excitability studies have emerged as a recent novel non-invasive technique that offers complementary information
to that provided by more conventional nerve conduction studies, the latter which provide only limited indices of
peripheral nerve function. Such novel tools allow for the assessment of peripheral axonal biophysical properties
that include ion channels, energy-dependent pumps and membrane potential in health and disease. With improvements
in technique and development of protocols, a typical study can be completed in a short period of time and rapid
measurement of multiple excitability indices can be achieved that provide insight into different aspects of peripheral
nerve function. The advent of automated protocols for the assessment of nerve excitability has promoted their use in
previous studies investigating disease pathophysiology such as in metabolic, toxic and demyelinating neuropathies,
amyotrophic lateral sclerosis, stroke, spinal cord injury and inherited channelopathies. In more recent years, the use of
nerve excitability studies have additionally provided insights into the pathophysiological mechanisms underlying cerebellar
disorders that include stroke and familial cerebellar ataxias such as episodic ataxia types 1 and 2. Moreover, this technique
may have diagnostic and therapeutic implications that may encompass a broader range of neurodegenerative cerebellar
ataxias in years to come. In the foreseeable future, this technique may eventually be incorporated into clinical practice
expanding the currently available armamentarium to the neurophysiologist.
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Conventional nerve conduction studies (NCS) remain an
important tool and in many respects, an extension of the
clinical assessment in patients with neurological disor-
ders, particularly those pertaining to the peripheral ner-
vous system [1]. However, such techniques that employ
supramaximal stimuli to measure amplitude and velocity
of compound sensory or motor action potentials, provide
information on only the number of conducting fibres and
conduction velocity of the fastest, and hence only limited
indices of peripheral nerve function.
In more recent years, a novel technique of axonal excit-

ability has emerged and provide complementary informa-
tion to those offered by conventional NCS [2]. Since the
introduction of threshold measurements to study human
motor axons in 1970 [3] and its first application in a clinical
setting on diabetic patients [4], the technique has under-
gone modifications and refinement over the years with the
development of protocols to allow the rapid measurement
of multiple nerve excitability parameters in a short space of
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time and hence increasing the technique’s practicality when
applied in a clinical environment [5].
Axonal excitability techniques provide information re-

lated to activity of a variety of ion channels, energy-
dependent pumps and ion exchange processes activated
during impulse conduction in peripheral axons. While
axonal membrane potential cannot be directly measured
in intact human axons, indirect evidence may be obtained
through assessment of the changes in axonal excitability
measured through alterations in current required to elicit
an action potential of a defined size [6]. “Threshold” refers
to the stimulus current required to produce a predeter-
mined target compound muscle action potential (CMAP)
response (e.g., 40% of maximum) and can be that can be
adjusted on-line by the computer software (“tracked”)
during different manoeuvers (e.g., subthreshold condi-
tioning) to follow changes in nerve excitability [7].
Measurement of threshold depends on and therefore pro-
vides an indirect measure of resting membrane potential.
Furthermore, resting membrane potential is determined
by a complex network of axonal membrane ion channels
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(persistent Na+ channels, slow and fast K+ channels) and
the activity of the Na+/K+ pump [8] (Figure 1).
With the development of the rapid automatic testing

protocol known as “TROND” (names after a 3-day train-
ing symposium held in 1999 at Trondheim, Norway)
and the threshold-tracking software QTRAC (© Institute
of Neurology, Queen Square, London, UK) that runs the
protocol, a set of axonal excitability indices are generated,
that reflect the biophysical properties and membrane
potential of the axon [9] (Figure 2).
These non-invasive techniques allow the assessment of

axonal membrane function in vivo in a clinical setting,
and provide insight into both normal nerve function and
pathophysiological mechanisms in disease [10]. Over the
years, nerve excitability studies have been utilized in a
diverse range of conditions including toxic, metabolic,
both acquired and inherited demyelinating neuropathies,
neurodegenerative disorders such as amyotrophic lateral
sclerosis, as well as providing insight into pathophysio-
logical changes occurring at the peripheral nerve level in
disorders of the central nervous system such as stroke,
spinal cord injury and multiple sclerosis [7,11-32]. In
more recent years, the use of nerve excitability studies
have provided further insights into the pathophysio-
logical mechanisms underlying cerebellar disorders that
include stroke and familial cerebellar ataxias such as epi-
sodic ataxia types 1 and 2 [33-35]. In addition, this tech-
nique may have diagnostic and therapeutic implications
that may encompass a broader range of neurodegenerative
cerebellar ataxias in years to come.
Figure 1 Diagram of a myelinated axon illustrating ion channels, pump
Transient Na+ channels (Nat) are clustered at high density at the node of R
contributing to excitability and resting membrane potential. Fast K+ chann
limit re-excitation of the node following an action potential. Internodal con
hyperpolarization-activated cation conductance (IH). The Na+–K+ pump (Na
necessary for impulse conduction by removing 3 Na+ ions for every 2 K+ io
and imports Na+, driven by the electrochemical Na+ gradient. Paranodal myel
junctions at the paranodal region.
The peripheral nerve excitability changes observed in
ischemic stroke involving the cerebellum may be a re-
flection of a transynaptic plastic process or alterations in
activity of the limb(s) that result from the resultant func-
tional deficit [13,15]. Downstream peripheral nerve ex-
citability changes have been observed in post-stroke
patients involving motor pathways in the brain that may
reflect alterations in inward rectifying (IH) and slow K+

conductance, suggesting that transynaptic plasticity in
peripheral motor axons develop in response to a remote
lesion in the central nervous system [14,15], possibly
reflecting an alteration or disturbance in supraspinal cir-
cuitry and thereby input to spinal motoneurons, conse-
quently resulting in changes in their axonal physiology
[11,36]. As such, the biophysical changes present in cere-
bellar stroke patients may be a consequence of a down-
stream transynaptic plastic process following changes in
excitability reported to occur in both motor cortices in
cerebellar stroke [37]. Additionally, the intricate connec-
tions that exist between the deep cerebellar nuclei and
motoneurons of the cervical spinal cord, may mean that
lesions involving these deep cerebellar structures may
ultimately affect excitability of downstream lower motor
neurons within the circuitry [38-41].
Genetic neuronal channelopathies commonly manifest

with paroxysmal symptoms that may vary considerable
between patients rendering diagnosis an often challen-
ging feat. In patients with episodic ataxia type 1 (EA1),
mutations in KCNA1 gene result in alterations in fast K+

channel function. Specifically, the gene encodes for the
s and exchangers responsible for determining axonal excitability.
anvier, with persistent Na+ channels (Nap) and slow K+ channels (Ks)
els (Kf) are located at highest density at the juxtaparanode, acting to
ductances include voltage-independent ‘leak’ conductances (Lk) and
+/K+-ATPase) utilises energy to maintain the electrochemical gradient
ns pumped into the axon. The Na+–Ca2+ exchanger exports Ca2+ ions
in terminal loops are depicted with anchoring proteins to form paranodal



Figure 2 Plots of excitability parameters recorded from abductor pollicis brevis in a single subject obtained from automated protocol.
(A) Charge-duration relationship, in which intercept on stimulus width axis gives strength-duration time constant and slope gives rheobase. (B) Threshold
electrotonus for 100 ms polarizing currents, ±40% of threshold. Responses to depolarizing currents start above the line and those to hyperpolarizing
currents below the line. (C) Recovery cycle following supramaximal stimulation. (D) Current-threshold relationship.

Huynh and Kiernan Cerebellum & Ataxias  (2015) 2:4 Page 3 of 5
α subunit of the Kv1.1 channel. With such channels also
present at the juxtaparanodal region of peripheral axons,
a specific pattern of nerve excitability abnormalities in
patients with EA1 have been observed which do not ap-
pear to be different amongst the different mutations
[34]. Moreover, there are patients with EA1 who present
with a predominantly peripheral phenotype but with typ-
ical EA1 changes observed in nerve excitability parame-
ters rendering this a potential useful diagnostic tool in
identifying those patients with an atypical presentation
[33]. Of further relevance, the changes in parameters in
EA1 differ from those seen in acquired autoimmune neu-
romyotonia (Isaac’s syndrome) which is a channelopathy
affecting the same K+ channels, suggesting a pathophysio-
logically different effect on these channels along the axon
between the two conditions . Studies on patients with
episodic ataxia type 2 (EA2) have also shown a unique
pattern of nerve excitability alterations. Mutations of
the CACNA1A gene that encodes the Cav2.1 subunit of
the voltage-gated Ca2+ channels represent the genetic
defect underlying this disorder, and the changes observed
in axonal function are postulated to have been a result of
Ca2+ channel dysfunction which consequently affect the
function of slow K+ channels [35].
Studies have shown changes in voltage-gated K+ chan-

nel kinetics present in the cerebellum of murine models
with spinocerebellar ataxia type 3 (SCA3) that precede
the onset of Purkinje cell loss [42]. Based on these prelimin-
ary observations, future studies utilizing nerve excitability
in human patients with the spinocerebellar ataxia may
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allow for the development of a diagnostic electrophysio-
logical biomarker.
Taken together, nerve excitability studies may provide

for a sensitive technique that can be applied in a quick
and non-invasive manner to facilitate the diagnosis of a
range of acquired autoimmune or neurodegenerative as
well as genetic cerebellar disorders.
Studies of nerve excitability in chemotherapy-induced

neurotoxicity have provided insight into the pathophysio-
logical mechanisms involved and enable early identification
of neurotoxicity thereby optimizing treatment strategies
and improving patient quality of life in cancer patients [43].
Assessment of motor and sensory nerve function in many
chemotherapy-induced neuropathies using conventional
NCS has revealed significant reductions in compound
sensory action potential (CSAP) amplitude whilst
CMAP and conduction velocities are often preserved,
consistent with a sensory neuropathy of the axonal type
[20,44]. Studies of sensory nerve excitability have demon-
strated a direct effect of oxaliplatin on nerve excitability,
with changes in sensory axons immediately following infu-
sion similar to those seen with the Na+ channel blocker
tetrodotoxin [19], suggesting partial blockade of axonal
Na+ channels [9,20,22]. Longitudinal assessment of axonal
excitability have shown that before each successive oxalipla-
tin treatment, progressive changes in nerve excitability with
increased cumulative dosing were observed [45]. There
were significant changes in threshold electrotonus and
recovery cycle indices. Importantly, progressive changes
in sensory nerve excitability across treatment cycles
occur before reductions in peak CSAP amplitude are de-
tected [46]. This suggests that such changes may be able
to identify at-risk patients prior to the development of
chronic neuropathy [47,48].
In diabetic neuropathy patient, studies of nerve excit-

ability have demonstrated alterations in threshold electrot-
onus consistent with reductions in Na+/K+ pump
function, that subsequently improved following strict gly-
cemic control [23,49]. Other studies have suggested
changes in on Na+ channel function with alterations in re-
covery cycle parameters [50]. Recent studies have also
shown marked improvement in nerve excitability parame-
ters in patients treated with continuous insulin therapy com-
pared to other regimens [51]. More importantly, changes in
nerve excitability preceded the development of neuropathy
in diabetic patients thus providing a promising biomarker
for detecting preclinical neuropathy in such patients [52,53].
Furthermore, in those patients with typical neuropathic
symptoms that may reflect small fibre neuropathy and
hence normal results on conventional nerve conduction
studies, nerve excitability techniques offer a more sensitive
way to establish the presence of altered nerve function
underlying these symptoms and providing a potential bio-
marker to aid the treatment of symptoms in these patients.
Excitability studies in patients with chronic kidney disease
and neuropathy have demonstrated significant changes
consistent with axonal depolarization driven by hyperkale-
mia prior to dialysis that normalized following such renal
replacement therapies [21,54]. Such techniques have also
provided insight into the differential effects of various
haemodialysis regimens on nerve function [55], as well as
potential neurotoxic effects of various immunosuppressants
following renal transplant [56], allowing for the appropriate
selection of management strategies involved in renal
replacement.
In summary, nerve excitability techniques are a powerful

and novel non-invasive means of detecting alterations in
axonal biophysical properties that may potentially expand
the current armamentarium available to the clinical neuro-
physiologist. The recent development of commercially
available software and hardware represent a step toward
implementing these techniques as a clinical diagnostic
tool. These measurements are not only important
in investigating the pathophysiology of disorders of the

peripheral and to a lesser degree the central nervous sys-
tems, they will play a significant role in charting disease
progress, and detecting subclinical alterations in nerve
function in neuropathies and during treatment with po-
tentially neurotoxic drugs. This in turn will aid in the
development of novel therapies for disorders of the ner-
vous system.
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