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Abstract

The cerebellum is important for motor control, cognition, and language processing. Afferent and efferent fibers
are major components of cerebellar circuitry and impairment of these circuits causes severe cerebellar malfunction,
such as ataxia. The cerebellum receives information from two major afferent types – climbing fibers and mossy fibers.
In addition, a third set of afferents project to the cerebellum as neuromodulatory fibers. The spatiotemporal
pattern of early cerebellar afferents that enter the developing embryonic cerebellum is not fully understood.
In this review, we will discuss the cerebellar architecture and connectivity specifically related to afferents during
development in different species. We will also consider the order of afferent fiber arrival into the developing
cerebellum to establish neural connectivity.
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Introduction
The cerebellum is responsible for coordinating move-
ment and maintaining equilibrium, and it is also
involved in behavioral, cognitive and emotional func-
tions [1–4]. Proper cerebellar function depends on
well-organized neuronal connections and the integra-
tion of afferent and efferent fibers throughout cerebel-
lar circuitry [5]. The cerebellum can be divided into
two longitudinal regions along the rostral to caudal
axia, which are anatomically named the vermis and
hemisphere. Mediolaterally, each of these regions is
folded into lobes, lobules and folia. Traditionally, the
cerebellum is divided into 3 lobes that are further sub-
divided into 10 lobules. Lobules I-X numbering is used
for the lobules of the vermis and the corresponding
lobules of the hemisphere are indicated with the prefix
H (e.g. [6–8]). Recent studies suggest that the funda-
mental architecture of the cerebellum is organized into
five transverse zones based on gene expression and af-
ferent fiber termination; the anterior zone (AZ: lobules

I-V in mice), the central zone (CZ: lobules VI-VII,
which is further subdivided into anterior (CZa) and
posterior (CZp) components [9, 10]), the posterior zone
(PZ: lobules VIII-dorsal lobule IX), and the nodular
zone (NZ: ventral lobule IX and lobule X) (e.g. [11–18]).
The boundaries of these zones do not align with the lobes
and lobules, but do correspond to the pattern of afferent
termination, and thus provides a more functionally rele-
vant way of dividing the cerebellum.
The three-layered cerebellar cortex contains six main

neuronal cell types: stellate and basket cells in the molecu-
lar layer, Purkinje cell somata in the Purkinje cell layer,
and granule cells, Golgi cells, and unipolar brush cells in
the granular layer. Neurons of the cerebellar nuclei are lo-
cated close to the roof of the fourth ventricle deep within
the cerebellar white matter. The cerebellar nuclei and the
lateral vestibular nucleus constitute the sole output (effer-
ent) of the cerebellum, and play a central role in cerebellar
circuitry and function (e.g. [1, 19–22]).
The cerebellum is connected to the brainstem by three

pairs of peduncles (superior, middle, and inferior), which
are the pathways by which cerebellar afferents and effer-
ents enter and exit [23, 24]. Cerebellar afferents can be
grouped into two major types: mossy fibers and climbing
fibers. Mossy fibers constitute the majority of afferent fi-
bers in the adult cerebellum and arise from multiple
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sources. There are four main groups of mossy fibers that
project to specific parts of the cerebellum: 1) the som-
atosensory projections (spinocerebellar and trigemino-
cerebellar fibers), which originate from the spinal cord
and the trigeminal system (ganglion and nuclei) respect-
ively, and project primarily to lobules I-VI and lobule
VIII (e.g. [23, 25–27]); 2) vestibulocerebellar projections,
which originate from the vestibular system (ganglion
and nuclei) and terminate in ventral lobules IX and
the flocculus with the adjacent ventral flocculonodular
[28, 29]; 3) reticulocerebellar projections, which ori-
ginate from the lateral reticular nuclei, the parame-
dian reticular nucleus and the nucleus of Roller, and
nucleus reticularis tegmenti pontis terminate throughout
the cerebellum, but generally mirror the projections of the
spino/trigeminocerebellar and vestibulocerebellar systems
(e.g. [30–33]) pontocerebellar projections, which originate
from the pontine nuclei and terminate throughout the
cerebellum, especially in the vermis and hemispheres of
lobules VI-VII (central zone), but not in the nodulus
and flocculus [34–36]. The nucleus prepositus hypo-
glosi is also a source of a mossy fiber system that pro-
jects restricted regions of crura I and II as well as the
caudal vermis and vestibulocerebellum [37]. Mossy
fiber afferents communicate with cerebellar nuclei neu-
rons and with Purkinje cells through granule cells/par-
allel fibers [24, 38–40]. Climbing fibers are exclusively
derived from the inferior olivary complex and enter the
contralateral cerebellum through the inferior cerebellar
peduncle [41, 42]. Climbing fibers directly synapse with
the cerebellar nuclei and Purkinje cells (the sole output
cells of the cerebellar cortex) [43–45]. In addition, a third
set of afferents not categorized as mossy or climbing fibers
exists, which terminate in all three layers of the cerebellar
cortex and the cerebellar nuclei. Their functional role is
neuromodulation and thus, they are categorized as
neuromodulatory cerebellar afferents (i.e., serotonergic,
noradrenergic, acetylcholinergic, dopaminergic, and hista-
minergic neuromodulatory afferents) (e.g. [1, 46–49]).
Extension and direction of early afferent fibers (axon pi-

oneers) to their target neurons during development is
controlled by genes and molecules, which mostly play a
role in repulsion attraction (e.g. [50]). Several families of
these proteins have been identified and among them four
well-characterized families play an important role in axon
guidance and development such as; Ephrin/Eph [50, 51],
Semaphorins/ Neuropilins, [52, 53], Netrin [54, 55], and
Robo/Slit [56, 57]. Molecules, such as integrins, fasciclin
and neural cell adhesion molecules (NCAMs), are import-
ant in pioneer axon development by providing a substrate
that promotes outgrowth of growth cones [58]. In
addition, morphogens, initially characterized based on
their effects on early patterning, are being increasingly im-
plicated in axon guidance [50]. Morphogens found to be

essential in cerebellar development include the Wnts
family [59], Sonic hedgehog (Shh) [60, 61] and bone mor-
phogenetic proteins (BMPs) [62]. These molecules from
cell surfaces and intracellular signaling pathways provide
cues that enable growing axons to terminate at their target
cells. The Eph/Ephrin gene family has been indicated as a
possible molecular pathway involved in regulating afferent
patterning in both chick and mouse embryonic cerebella
[63–65]. Engrailed-2 is important in development of cere-
bellum and regulates mossy fiber projections [66, 67].
UNC-5, a Caenorhabditis elegans protein that is essential
for dorsal guidance of pioneer axons is important in
development of the rostral cerebellum [68]. It has also
been suggested that axonal development in the
cerebellum is regulated by WNT-7a signaling [69].
Furthermore, gene mapping studies have shown that
precerebellar nuclei including inferior olivary nuclei
neurons likely originate from an area expressing Ptf1a,
Oli3 and Wnt1 (e.g. [70]). Brn3 expression has been
shown to be necessary for inferior olivary nuclei devel-
opment [71]. Gene expression appears to be conserved
across vertebrates as the inferior olivary nuclei of
zebrafish also express ptf1a and brn3a [72]. It is known
that the cerebellum and inferior olive express neurotro-
phins and their receptors that are involved in climbing
fiber development [73]. It is also known that some genes
are expressed differently in subsets of mossy fibers (e.g.
somatostatin) and climbing fibers (e.g. corticotropin re-
leasing factor) [74]. However, the regulatory roles of these
genes and proteins in cerebellar afferent projections are
poorly understood and will be interesting to investigate
further to understand cerebellar circuit formation during
cerebellar development.
The basic organization of afferent and efferent cerebellar

connections appears to be conserved throughout evolu-
tion [75]. While there is much information regarding
sources, pathways, terminations, and functions of afferents
in the adult cerebellum, little attention has been paid to
the subject during embryonic development. The order of
afferent fiber arrival during cerebellar development is
likely to be important in setting up the principal cerebellar
circuits, but this is poorly understood. The basic spatio-
temporal pattern of cerebellar afferents appears to be
common between mammals, avians, reptiles, amphibians,
and fish (e.g. [76, 77]). Therefore, in this review, we
integrate information from different species in an attempt
to resolve the order of afferent fiber arrival into the devel-
oping cerebellum.

Review
Development of cerebellar afferents
Mossy fibers
Mossy fiber projections probably play a critical role in
establishing and organizing cerebellar circuitry during
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early embryonic development. Conventionally, it is
believed that mossy fibers enter the early embryonic
cerebellum and target the Purkinje cells. However, it
has been demonstrated that mossy fiber contacts with
Purkinje cells are temporary and transient. Postnatally,
as the granular layer matures, mossy fibers displace
from Purkinje cells and synapse with their adult targets,
the granule cell dendrites (e.g., [14, 77–81]). This multi-
stage process of mossy fiber relay on timing and order of
arrival during cerebellar development could be required
for proper circuit formation and/or for afferents to pattern
the target tissue.

Somatosensory pathway
Somatosensory input is carried into the cerebellum via
spinocerebellar and trigeminocerebellar tracts.

Spinocerebellar afferents
The spinocerebellar afferent system is comprised of the
dorsal spinocerebellar, ventral spinocerebellar, cuneo-
cerebellar, rostral spinocerebellar tracts and from the
central cervical nucleus which collectively convey pro-
prioceptive information to the cerebellum. However,
dorsal spinocerebellar tract component from lamina V
and cuneocerebellar component from the internal cune-
ate nucleus transmits exteroceptive information to the
cerebellum. The spinocerebellar afferents originate from
diverse laminae of the spinal cord and can be classified
into crossed and uncrossed tracts according to the cell
origin and fiber course [82]. The cerebellum receives
proprioceptive information from the hind limbs through
the dorsal spinocerebellar tract (uncrossed) and the ven-
tral spinocerebellar tract (crossed) [82, 83]. The dorsal
spinocerebellar tract originates from the dorsal horn
(mainly dorsal thoracic nucleus that is also known as
Clarke’s column) and provides a major mossy fiber input
to the spinocerebellum, which plays a significant role in
the control of posture and locomotion [84, 85]. The input
conveyed by the ventral spinocerebellar tract originates
from neurons of the dorsal and ventral horn and it moni-
tors activity of spinal interneuronal networks [82, 86, 87].
The cuneocerebellar and rostral spinocerebellar tracts are
the upper limb equivalents of the dorsal and ventral spino-
cerebellar tracts, respectively. The sources of these tracts
are well known: the cuneocerebellar tract originates from
the external and internal cuneate nucleus and the gracile
nucleus in the medulla oblongata and the rostral spinocer-
ebellar tract originates from the cervical spinal cord. The
termination of all spino- and cuneocerebellar tracts is in
bilateral, alternating symmetrically disposed longitudinal
aggregates of mossy fiber terminals. The spinocerebellar
afferents project to the cerebellum through the inferior
cerebellar peduncle (non-crossed) and the superior cere-
bellar peduncle (crossed), and terminate in the anterior

zone (lobules I-V) and posterior zone (lobules VIII-IXd)
[28, 88].
Clinically, the spinocerebellar system is involved in a

heterogeneous group of disorders classified collectively
as spinocerebellar ataxia [89]. Spinocerebellar ataxia is
a neurodevelopmental and neurodegenerative disease
characterized by progressive incoordination of move-
ment and degeneration of the cerebellar cortex and
spinocerebellar pathways [89, 90]. It is believed that
the cerebellar circuit organization, which is established
during early cerebellar development, may be altered in
ataxia (e.g. [91]).

Development of the spinocerebellar afferents
Spinocerebellar mossy fiber projections to the cerebellum
during prenatal development have been studied in mice
using in vitro tract tracing techniques (e.g. [22, 92]). Re-
sults of these studies have shown that at embryonic day
12/13 (E12/13), neuronal sources of spinocerebellar mossy
fibers from the caudal cervical spinal cord are present, but
there are no projections to the cerebellum. At approxi-
mately E13/14, spinocerebellar projected fibers have been
shown to be present in the rostrolateral portions of the
cerebellum adjacent to the isthmus region. Spinocerebellar
fibers progress farther into the cerebellum and the num-
ber of crossed fibers increases as aging occurs [22]. In rats,
tract-tracing methods have shown that spinocerebellar fi-
bers project to the cerebellum in two successive groups:
the first group is present in the cerebellum perinatally and
the second group reaches the cerebellum by postnatal day
3 (P3) and targets the vermis of the anterior lobe and pyr-
amis [93]. However, this timing was revised by Ashwell
and Zhang, who showed that spinocerebellar fibers may
be present in the developing rat cerebellum at around E15
[92, 94]. The external cuneate neurons are generated from
the caudal rhombic lip between E13 and E15 in mice and
may enter into the cerebellum during E13-E15 and there-
after [7, 95]. In the rat, cuneocerebellar fibers arrive in the
developing cerebellum by E16/17 ipsilaterally via the infer-
ior cerebellar peduncle [6].
In the chicken, spinocerebellar projections have been

studied by injecting WGA-HRP into the spinal cord of
embryos at different stages of development. These studies
showed that spinocerebellar fibers entered the cerebellum
at around the 7th incubation day [96]. In the African
clawed frog, Xenopus laevis, spinocerebellar afferents were
studied using HRP tracer techniques. At approximately
stage 50, before the formation of the limbs, the ventral
spinocerebellar projections appeared to be present in the
cerebellum prior to entry of the dorsal spinocerebellar
tract [97]. Although primary spinocerebellar projections
from spinal ganglion cells to the cerebellum have been
demonstrated in the adult frog [98, 99], they were not de-
tectable during development [97]. Tract tracing methods
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have also been used to study spinocerebellar projections
in reptiles including turtles (Pseudemys scripta elegans
and Testudo hermanni), lizards (Varanus exanthematicus),
and snakes (Python regius). The basic pattern of cerebellar
afferent projections appears to resemble that of other ver-
tebrates. However, it has been suggested that there is no
column of Clarke or central cervical nucleus in the reptil-
ian spinal cord [99]. To our knowledge, no developmental
studies have investigated spinocerebellar projections in
reptiles. In the lesser spotted dogfish (Scyliorhinus), spino-
cerebellar afferents were shown to project to the develop-
ing cerebellum at around stage 32 (equivalent to around
E14.5 in the mouse) [100, 101].
In summary, spinocerebellar fibers invade the developing

cerebellum at around E13/14 in the mouse (e.g. [22, 92]),
E15 in the rat [94], HH33 (Hamburger-Hamilton stages
33) in the chicken (around the 7th incubation day; [96]),
stage 50 in Xenopus laevis [97], and at stage 32 in the dog-
fish [101, 102] (Tables 1 and 2).

Trigeminocerebellar afferents
The trigeminal system (trigeminal nerves, ganglion, and
nuclei) is the largest cranial nerve, which has both
sensory and motor components [103]. Peripherally, the
trigeminal nerve is comprised of three branches: ophthal-
mic (V1, sensory), maxillary (V2, sensory), and mandibular
(V3, sensory and motor), which converge together on the
trigeminal ganglion. From the trigeminal ganglion, a single
large sensory root enters the brain stem at the level of
the pons and terminates at the complex trigeminal nu-
clei, which consist of the spinal trigeminal nucleus,
main (principal) trigeminal nucleus, and mesencephalic
trigeminal nucleus. The motor component is derived
from the basal plate of the embryonic pons, while the
sensory component originates from the alar plate and
the neural crest (e.g. [104]).

The trigeminal nerve carries temperature, pain and tact-
ile information from the skin, jaws and teeth. In addition,
it carries proprioceptive input primarily from the muscles
of mastication to the mesencephalic trigeminal nucleus,
which projects to higher centers to coordinate jaw move-
ment in activities such as suckling, mastication, biting and
speech (e.g. [105]). In adult rats, the mesencephalic and
interpolaris trigeminal nuclei have direct projections to
the cerebellum [106, 107]. There are also primary trigemi-
nal afferent projections from the ganglion (probably from
the mandibular branch) to the cerebellum of adult rats
[108]. The primary trigeminocerebellar projections (ori-
ginating from the trigeminal ganglion) run through the
superior peduncle, whereas secondary trigeminocerebellar
projections (originating from the trigeminal nuclei) run
through the inferior peduncle, and both terminate in the
same target areas in the cerebellum [26, 109].
In the cerebellum, the mesencephalic tract nucleus pro-

jects to the anterior lobe, the simple lobule (HVI), lobules
VI, VIII, and the dorsal paraflocculus (e.g. mice [27], rats
[109], and sheep [110]). The ventral group of the main
(principal) and spinal tract nuclei project to all lobules in
the vermis and hemispheres, whereas the dorsal parts of
these nuclei have a more restricted projection field includ-
ing the vermis of the lobules VI, VII, and IX and corre-
sponding hemispheres [110]. In the rat, the trigeminal
nucleus oralis projects to ipsilateral orofacial portions of
four major tactile areas (crura I and II, the paramedian
lobule, and the uvula) of the cerebellar cortex [111, 112].
Retrograde tracing has shown that most of the spinal
trigeminal nuclei project to the paramedian lobule in the
tree shrew (Tupaia glis), but the principal and mesenceph-
alic trigeminal nuclei do not [113]. Trigeminocerebellar
afferents have been demonstrated in Xenopus laevis [114].
In mallards, the trigeminocerebellar afferents terminate
predominantly in lobules V, VI and VII, and possibly in

Table 1 Timing of cerebellar afferent fiber arrival in different species during the embryonic period

Afferent fiber Mouse Rat Chicken Xenopus Reptile Fisha

Spinocerebellar a E13/14 E15 HH33/E7 Stage 50 n/a Stage 32

Trigeminocerebellar a n/a E22/P0 n/a Stage 48 n/a Stage 32

Vestibulocerebellar a E11-13 13-14/15 n/a Stage 48 n/a n/a

Reticulocerebellar a E13/14 E16/17 n/a Stage 48 n/a Stage 32

Pontocerebellar a E16 perinatal n/a n/a n/a n/a

Olivocerebellar a E14/15 E17 E9 n/a n/a Stage 32

Serotonergic cerebellar a postnatal postnatal n/a Stage 56 n/a n/a

Noadrenergic cerebellar a E14 E17 n/a n/a n/a n/a

Cholinergic cerebellar a n/a n/a n/a n/a n/a n/a

Dopaminergic cerebellar a n/a n/a n/a n/a n/a n/a

Histaminergic cerebellar a n/a n/a n/a n/a n/a n/a

Note: a, afferent fiber
The “n/a” means that there is no data available for afferents projection to the cerebellum during embryonic development in these species
aThis is the only stage that has been studied; therefore everything arrives at stage 32
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lobule IV, and are ipsilateral except for the vermal area
[115]. The secondary trigeminocerebellar projections have
been demonstrated in mammals (e.g. [116]), birds [117],
reptiles [100], and amphibians [114].

Development of the trigeminocerebellar afferents
In the central nervous system, mesencephalic neural
crest cells emerge and start migrating at the 4- to 7-
somite stage in mice, some of which give rise to the
primary sensory neurons that form the mesencephalic
trigeminal nucleus [104]. At E8.5, by the 10-somite
stage, the first group of neurons can be identified in the
rostral part of the mesencephalon [104]. This is the earli-
est neuronal development that has been detected in the
central nervous system; this is in contrast to previous in-
formation, which indicated that neurons first differentiated
in the mouse central nervous system by E9-E10 [104]. It
has been demonstrated that the cells of the mesencephalic
trigeminal nucleus are born before E11 in rats [118], and
as early as E8 in mice [104]. Although formation of this
nucleus takes place during early neural tube develop-
ment, Ashwell and Zhang have suggested that the trige-
minocerebellar afferents project to the cerebellum
around E22 in rat [94].
Information regarding the development of trigeminal

projections in the avian cerebellum is limited. In reptiles,
the presence of trigeminocerebellar projections has been
demonstrated [100], but not studied during development.
In amphibians (Xenopus laevis), the secondary trigemino-
cerebellar projection (from the descending nucleus of the
trigeminal nerve) has been shown in the cerebellum at
approximately stage 48 [97]. In addition, trigeminocerebel-
lar fibers can be observed in the cerebellum at stage 32 in
the dogfish [102] (Tables 1 and 2). Thus, the trigeminal
system components seem to be among the earliest

neurons and fibers to develop in the vicinity of the cere-
bellar primordium. However, the lack of clarity in the tim-
ing of the developing trigeminocerebellar projections
requires further research.

Vestibulocerebellar afferents
The vestibulocerebellar system, which is important for
maintaining balance and equilibrium, provides sensory
input to the cerebellum [119]. The vestibular nucleus
includes four subnuclei: superior, inferior, medial, and
lateral [119]. The lateral vestibular nucleus does not
receive vestibular root fibers, but Purkinje cell axons
from the B zone (the lateral part of the vermis), there-
fore, it is a cerebellar rather than a vestibular nucleus
[28]. Projections from the vestibular system to the cere-
bellum are comprised of two components: primary
vestibular mossy fiber afferents (i.e. originate from the ves-
tibular ganglion) and secondary vestibular mossy fiber
afferents (i.e. originate from the vestibular nuclei) [120].
Vestibular nerve projections to the cerebellum are primar-
ily limited to the nodulus, uvula, and flocculus [120, 121].
Additionally, in bottom deep fissures (basal part of the
lobules), lobules I and II, where they are distributed in par-
allel longitudinal aggregates [122], the flocculus does not
receive primary vestibular mossy fibers [123]. The “ves-
tibular commissure” of Larsell would form the basis of the
flocculonodular lobe [124]. Primary and secondary vesti-
bulocerebellar afferents have been shown in amphibians
[125, 126], reptiles [100, 127], birds [128] and mammals
(e.g. [116, 129–131]).

Development of vestibulocerebellar afferents
It is suggested that vestibular ganglion neurons are
born on E10-E14 in mice [131], and E11-E13 in rats
[132]. Vestibular nuclei projection neurons are born in

Table 2 Timing of cerebellar afferent fiber arrival in different species during embryonic and postnatal stages

Afferent fiber Embryonic postnatal

Days 2 4 6 8 10 12 14 16 18 0/2 adult

Spinocerebellar a ►
Trigeminocerebellar a

Vestibulocerebellar a ►
Reticulocerebellar a ►
Pontocerebellar a ►
Olivocerebellar a ►
Serotonergic cerebellar a ►
Noradrenergic cerebellar a ►
Cholinergic cerebellar a

Dopaminergic cerebellar a

Histaminergic cerebellar a

a, afferent fiber
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the neuroepithelium lining the fourth ventricle between
E12 and E14 in the rat in the following order: the lat-
eral (approximately E12), superior (approximately E13),
inferior (approximately E13-14), and medial vestibular
nucleus (approximately E13-14) [132, 133]. Historically,
the classical observation of Tello and Ramon Y Cajal
(1909) suggested that vestibular fibers were the first af-
ferents to reach the cerebellum at six days prenatal in
the mouse. However, the timing was slightly revised
some years later, with vestibular axons from the vestibular
ganglia being the first afferents to enter the cerebellum at
E13-14/15 in the rat and E11-12/13 in mice [94, 133, 134].
From E15, collateral branches from primary vestibulocere-
bellar afferents form contacts with the developing vestibu-
lar nuclei within the subventricular zone [134].
Vestibular nuclei are generated at around E2 in chick-

ens [135]. However, to date there are no data for avian
vestibulocerebellar fiber development. Developmental
studies are currently lacking on reptilian vestibulocere-
bellar projections, but in amphibians (Xenopus laevis),
it has been demonstrated that vestibulocerebellar pro-
jections, which mainly arise bilaterally in the nucleus
vestibularis caudalis, appear at around stage 48 [97]
(Tables 1 and 2). Although the vestibulocerebellar pro-
jections are suggested to be the earliest afferents to in-
vade the cerebellar primordium, further studies using a
greater range of experimental approaches are required
to confirm this important and fundamental process.

Reticulocerebellar afferents
A mixture of neurons and nerve fibers located in the
brainstem make up a poorly defined group of nuclei
collectively referred to as the reticular formation. The
reticular formation is a primitive neuronal network upon
which a more morphologically organized mass of neu-
rons have developed during evolution [135, 136]. The
reticular formation can be divided into three bilateral
longitudinal columns based on both structure and func-
tion: median (raphe nuclei), medial, and lateral nuclei
[136]. The lateral reticular nucleus can be further di-
vided into three subnuclei (parvocellular, magnocellular
and subtrigeminal) that project to the cerebellum. The
caudal and ventral part of the lateral reticular nucleus
projects bilaterally, mainly to the vermis, its rostral and
dorsal part, that receives the “ipsilateral forelimb tract”
and a collateral projection of the rubrospinal tract pro-
jects to the ipsilateral hemisphere [137]. The paramedian
pontine reticular nucleus projects bilaterally to the cere-
bellar lobules VI, VII and the crura I and II that sym-
metry about the medline [32]. The parvocellular portion
and adjacent magnocellular portion project primarily to
the vermis, the remaining magnocellular subnucleus
projects to the hemispheres, and the subtrigeminal sub-
nucleus projects to the flocculonodular lobe. Neurons of

the reticular formation project to the cerebellar cortex
and cerebellar nuclei through the superior/middle/inferior
cerebellar peduncles [138]. Reticular formation projec-
tions, which are aligned with the cerebellar architecture,
carry out functions such as orofacial behaviour, including
eye blink reflexes [39, 138].

Development of reticulocerebellar afferents
In the rat, the reticulocerebellar nucleus is not identifi-
able until birth when the axons of these neurons reach
the cerebellum, even though reticular nucleus neurons
are born on E12/13 [30]. Other studies have suggested
that axons from the lateral reticular nuclei begin arriving
in the developing cerebellum by E16/17 in rat (equiva-
lent to E13/14 in mouse; [7]) via the inferior cerebellar
peduncle [139]. At present, detail regarding the reticulo-
cerebellar projections in the avian cerebellum is lacking
(e.g. [96]). In reptiles, projections to the cerebellum were
demonstrated from the reticular formation [100], but
developmental studies in this system are currently re-
quired. Reticulocerebellar connections have been demon-
strated experimentally at stage 48 in Xenopus laevis, [97].
In the dogfish, reticulocerebellar neurons are observed at
stage 32 from the reticular formation of the mesenceph-
alon and rhombencephalon [101, 102] (Tables 1 and 2).
The reticular formation is a complicated organization

of nuclei that is involved in both sensory and motor
pathways, and is generally one of the earliest nuclei to
grow ontogenetically and phylogenetically. It seems that
the reticulocerebellar projections are established early in
development as a fundamental requirement to establish
the basic functional circuitry of this pathway.

Pontocerebellar afferents
The pontine nuclei, located at the basilar portions of the
pons (basilar pontine nuclei), receive most of their input
from the cerebral cortex [140]. The majority of mossy
fibres innervating the hemispheres originate from the pon-
tine nuclei [138]. All pontocerebellar fibers end as mossy
fibers in the cerebellar nuclei and cortex [141, 142]. The
nucleus reticularis tegmenti pontis project to the cerebel-
lar nuclei (pronounced in lateral and posterior interposed
nuclei), the paraflocculus and crus II of the ansiform lob-
ule [143]. The size of the pontine nuclei increases in paral-
lel with the size of the associated cerebral cortex, reaching
peak development in humans [136].

Development of pontocerebellar afferents
Pontine neurons arise from the lower rhombic lip around
E14 to E17 and tangentially migrate to the ventral pons in
the rat. At E16.5, migrating pontine neurons are present
in the pontine nuclei with their axons laterally projecting
towards the developing cerebellum [95]. These axons
cross the midline and enter the cerebellum through the

Rahimi-Balaei et al. Cerebellum & Ataxias  (2015) 2:7 Page 6 of 14



middle peduncle [144]. The neurons of the pontine
nucleus are generated from the rhombic lip at E16 in
mice [145], while in the rat, pontocerebellar nuclei
are first labelled at birth [92]. It has been suggested
that pontine mossy fibers enter the cerebellum perinatally
in rat [92, 146]. The pontocerebellar projections are found
in birds and mammals [33, 128, 145–148], but projec-
tions from the primordial pontine nuclei to the cerebel-
lum in reptiles and amphibians have not been
demonstrated [100] (Tables 1 and 2).

Climbing fibers
Climbing fibers are the second major type of cerebellar
afferents. Unlike mossy fibers, which originate from nu-
merous sites in the nervous system, climbing fibers
originate exclusively from the inferior olivary nucleus
(e.g. [41, 149–151]). The inferior olivary nucleus can be
subdivided into three major subnuclei: the principal
olivary nucleus, which projects mainly to the cerebellar
hemisphere, the dorsal accessory olivary nucleus, which
projects to the vermis and hemispheres, and the medial
accessory olivary nucleus, which projects to the vermis
and paravermis in the rat [152]. Climbing fibers relay
information to the cerebellum from several regions,
such as the cerebral cortex, thalamus, red nucleus,
reticular formation, trigeminal nuclei, and spinal cord.
It is evident that inferior olivary neurons are necessary
for proper cerebellar function, possibly in motor learn-
ing [153] and in motor timing [154]. The inferior
olivary nucleus is a common feature of amphibians,
reptiles, birds and mammals. Inferior olivary nucleus
projections have been demonstrated experimentally in
the frog [155, 156], and termination of these afferents
in a longitudinal pattern has been demonstrated in the
avian cerebellum [157]. The olivocerebellar circuit is
essential for normal cerebellar function [158].

Development of olivocerebellar afferents
Several studies support that inferior olivary neurons
originate from the caudal region of the rhombic lip, r6-8
(reviewed in [70]). Gene mapping studies have shown that
IO neurons likely originate from an area expressing Ptf1a,
Oli3 and low levels of Wnt1 (reviewed in [70, 159]. Brn3
expression has been shown to be necessary for ION devel-
opment [71]. Post-mitotic inferior olivary cells in the cau-
dal hindbrain migrate circumferentially toward the ventral
floor plate of the medulla where the mature inferior oliv-
ary nuclei will form [139, 160]. Inferior olivary neurons
originate at E10-11 in mice [70], E12-14 in rats [160], and
E3-5 in chicks [161].
Axons of inferior olivary neurons begin migration be-

fore the cell bodies, such that the axons reach the cere-
bellum around the same time that the cell bodies settle
in the ventral floor plate [162]. Organization of the

inferior olivary subnuclei is clear by E10 in chicks [159]
and E18/19 in rats [42, 139]. Olivocerebellar axons cross
the midline and enter the contralateral cerebellum
through the inferior cerebellar peduncle [42]. These axons
reach the cerebellum around E14/15 in mice [163], E17 in
rats [7, 164], and E9 in chicks [165]. Within the cerebel-
lum, inferior olivary axons give off thick and thin
branches. The thick branches form the climbing fibers,
which terminate in the cerebellar cortex and synapse dir-
ectly with Purkinje cells [42]. Immature climbing fibers
have been shown to occur in the Purkinje cell region as
early as P0 in mice [9, 166], and synapses have been found
to occur as early as E19 in rats [167]. Early in postnatal
development, each Purkinje cell is innervated by multiple
climbing fibers. In rats, this occurs as early as P3 and
peaks at P5, with an average of 3.5 climbing fibers per
Purkinje cell [168, 169]. Climbing fiber innervation is
subsequently reduced leaving a single strong excitatory
synapse [163]. Mono-innervation occurs by P15 in rats
[169]. In mice, this process is longer, ending around the
third postnatal week, with defined early and late stages
[151, 170]. The thin branches of the inferior olivary neu-
rons terminate on the cerebellar nuclei [171]. In the North
American opossum (Didelphis marsupialis virginiana),
olivary axons reach the developing cerebellum at approxi-
mately postnatal day 4 [172].
From an evolutionary perspective, the lamprey, an an-

cient jawless fish/agnathan, possesses a region compar-
able to the cerebellum [173]. The presence of the
inferior olivary nuclei in agnathans has not been dem-
onstrated; however, the presence of the inferior olivary
nuclei has been demonstrated in jawed fishes/gnathos-
tomes (e.g. teleosts [72] and chondrichthyans [101,
102]). The inferior olivary nuclei in fish are considered
to be homologous to the medial accessory olivary
nucleus of mammals [174]. In the dogfish (chon-
drichthyan), the olivocerebellar projections develop
after spinocerebellar projections [101, 102], similar to
birds and mammals. These projections are first obvious
during intermediate stage 32, when the first climbing
fibers reach the cortex [101, 102]. In dogfish, Purkinje
cells have matured by stage 32 [175], unlike mammalian
development in which climbing fibers enter the cerebel-
lum before Purkinje cells have matured. In zebrafish (tele-
ost), the inferior olivary nucleus can be distinguished at
4 days post-fertilization in the ventromedial region of the
posterior hindbrain, and climbing fibers have been shown
to innervate Purkinje cells at 5 days post fertilization
[72]. The development and organization of the olivo-
cerebellar system appears to be conserved throughout
vertebrates (e.g. [76, 175]). Overall, the arrival of infer-
ior olivary projections to the cerebellum appears to
happen at roughly equivalent developmental stages in
fish, birds, and rodents (Tables 1 and 2).
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Neuromodulatory afferents
In addition to mossy fibers and climbing fibers, other
cerebellar afferent pathways have also been discovered.
These afferents originate from subnuclei of the reticular
formation and are traditionally called neuromodulatory
cerebellar afferents. They project to the cerebellum
through the superior, middle, and inferior peduncles
and in general terminate in all three layers of the cere-
bellar cortex. The neuromodulatory cerebellar afferents
influence cerebellar circuitry in various ways and can
be categorized into 5 groups based on the chemical
messengers used for communication: serotonergic, nor-
adrenergic, acetylcholinergic, dopaminergic, and hista-
minergic neuromodulatory afferents (e.g. [46–49]). In
addition to their largely unknown function, the distri-
bution and development of these afferents projection to
the cerebellum is poorly understood.

Cerebellar serotonergic afferents
The serotonergic fibers are the largest modulatory af-
ferent fibers to the cerebellum [49]. A combination of
retrograde transport studies and serotonin immunohis-
tochemistry has shown that serotonergic cerebellar
fibers arise from a few of the reticular formation subnu-
clei: the nucleus reticularis gigantocellularis, the nu-
cleus reticularis paragigantocelularis, and also from the
pontine reticular formation in the nucleus reticularis
pontis oralis [176]. In rats, serotoninergic fibers project
to all parts of the cerebellar cortex. However, the distri-
bution of fibers across the cerebellum is not uniform,
with different densities projecting to the granule cell
and molecular layer and to different lobules. The fibers
also terminate in the Purkinje cell layer. The distribu-
tion is found to be thickest in lobules VIII-X of the ver-
mis. A dense uniform plexus of serotonergic cerebellar
fiber projections is present in the cerebellar nuclei of
the cat cerebellum [49, 176, 177]. It seems that seroto-
nergic fibers have modulatory effects on Purkinje cells
and cerebellar nuclei [178, 179].
From a clinical point of view, the serotonergic abnor-

malities in the cerebellum may be involved in patients
with developmental neuropsychiatric disorders such as aut-
ism and attention deficit/hyperactivity disorder (ADHD)
[180, 181]. Serotonin may disturb behavioral responses that
are associated with cerebellar timing signals, such as the
eye-blink reflex [49, 182].

Development of cerebellar serotonergic afferents
The expression of the serotonergic phenotype begins at
E12 just caudal to the mesencephalic flexure, in rostral
raphe nuclei [183, 184]. It is suggested that serotonergic
projections to the cerebellum develop during the postna-
tal period [185], which coincides with the perinatal de-
velopment of the cerebellar cortex. It has been shown

that serotonergic fibers are present in the chicken [186],
the opossum [172], and at stage 56 in the cerebellum of
Xenopus (which may have originated from inferior raphe
nucleus) [187] (Tables 1 and 2).

Cerebellar noradrenergic afferents
Noradrenergic afferents are the second largest modulatory
input to the cerebellum [46] and originate from the locus
coeruleus [188], a system that supplies noradrenaline
(norepinephrine) throughout the central nervous system.
The locus coeruleus is located in the pons, which is in-
volved in physiological functions such as arousal, sleep/
wake cycles, nociception, anxiety, stress, learning and
memory [189, 190]. Noradrenergic fibers project to all
parts of the cerebellar cortex and are found around
Purkinje cell dendrites, glomeruli, granule cell dendrites,
and cerebellar nuclei [116]. The significance of noradren-
ergic cerebellar projections is suggested to be correlated
with learning [191].

Development of cerebellar noradrenergic afferents
It is suggested that the locus coeruleus neurons are
among the first central nervous system neurons to arise
during ontogeny. In mice, these neurons originate from
dorsal r1 between E10.5 to E12.5, and their axons may
reach the cerebellum by E14 [192]. They establish axonal
connections to their target areas while migrating into
their nuclear area in 4th ventricle at around E17 in the
rat (Tables 1 and 2). Noradrenergic axons are demon-
strable in the developing cerebellum for the first time at
E17 and the peak of innervation is reached at P10 [193].
This hyper-innervation is transitory and declines to adult
values at around P20 [193].

Cerebellar cholinergic afferents
Cholinergic input to the cerebellum is thinly dispersed,
creating a diffuse plexus of beaded fibers in the cerebel-
lar cortex and cerebellar nuclei [194–196]. It has been
proved that a subset of vestibular projections to the
cerebellar cortex are cholinergic [196]. However, the
reticular formation is the principal source of cholinergic
cerebellar afferents [48]. In the rat cerebellum, choliner-
gic fibers originate in the pedunculopontine tegmental
nucleus, the lateral paragigantocellular nucleus, and, to a
lesser extent in various raphe nuclei [48]. Cholinergic
afferents terminate in the granule cell layer and molecu-
lar layer of the cerebellum in rat, rabbit, and cat [194].
The cholinergic fibers in the cerebellar nuclei form a
moderately dense network, and could, in principle, have
a significant effect on neuronal activity [48].

Development of cerebellar cholinergic afferents
Using specific binding sites for [3H]quinuclidinyl benzy-
late, Mallol et al. suggested that cholinergic fibers are
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present at a low level in the cerebellum at birth [197].
However, there is limited information regarding cholin-
ergic cerebellar afferents during development.

Cerebellar dopaminergic afferents
There are sparse dopaminergic projections to the cere-
bellar cortex and nuclei, which appear to originate
mostly from the ventral tegmental area [198]. It has been
demonstrated that most dopamine receptor proteins are
present in Purkinje cells [199]. Dopamine can influence
plasticity in Purkinje cells [46].

Development of cerebellar dopaminergic afferents
Dopaminergic neurons are born at approximately E10-
E14 in mice (E12-E16 in rats) from the ventral mid-
brain/mesencephalon floor plate [200]. However, there is
no on the development of dopaminergic cerebellar affer-
ent projections.

Cerebellar histaminergic afferents
Histamine plays a role as a neurotransmitter or a neuro-
modulator in the cerebellum. Interestingly, there are direct
fiber connections from the tuberomammillary nucleus of
the hypothalamus to the cerebellum [201], suggesting that
histamine is involved in signal transmission from the
hypothalamus to the cerebellum [202]. It has been pro-
posed that histaminergic fiber projections to the cerebel-
lum are important in regulating the level of behavioral
arousal, and in the control of autonomic and emotional
functions [46, 199]. Histaminergic cerebellar afferents have
been shown to be present in the cerebellum of the rat,
guinea pig and human [203–205].

Development of cerebellar histaminergic afferents
The first histamine-immunoreactive neurons have been
demonstrated at E13 in the border of the mesencephalon
and metencephalon [206]. However, additional informa-
tion is needed regarding further development of hista-
minergic cerebellar afferents.

Conclusions
The order in which cerebellar afferent projections ap-
pear throughout the development of embryonic mice
and rats, in comparison with the other species, has
shown that there is a general pattern in the arrival of
cerebellar afferents during embryonic development. This
suggests that the appearance of early cerebellar afferents
takes place during a short period; those from the vestibu-
lar nuclei, inferior olive, trigeminal, and reticular nuclei
arrive first, followed by the connections from spinal cord.
Knowing the order in which cerebellar afferents arrive will
provide information about the role that afferents may play
during early embryonic development of the cerebellar
primordium. The earliest afferent projections to the

cerebellum may be involved in development, acting as a
scaffold for subsequent incoming afferents, thereby
establishing cerebellar circuitry and function. Limited
knowledge about the order of cerebellar afferent develop-
ment during the embryonic period prevents appropriate
conclusions from being made, and requires further experi-
mentation in this area. There is no developmental infor-
mation available regarding some cerebellar afferents,
particularly in the neuromodulatory category. Thus, fur-
ther research is required to close this knowledge gap. In
addition, because less sensitive methods were used in the
past we suggest that the study of cerebellar afferent fiber
development should be revisited by utilizing genetically
encoded tools to detect the sequence of afferent projections
during developing.
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