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Abstract

Background: Growing neuroimaging and clinical evidence suggests that the cerebellum plays a critical role in
perception. In the auditory domain, the cerebellum seems to be important in different aspects of music and sound
processing. Here we investigated the possible causal role of the cerebellum in two auditory tasks, a pitch discrimination
and a timbre discrimination task. Specifically, participants performed a pitch and a timbre discrimination task prior and
after receiving offline low frequency transcranical magnetic stimulation (TMS) over their (right) cerebellum.

Results: Suppressing activity in the right cerebellum by means of inhibitory 1 Hz TMS affected participants’ ability to
discriminate pitch but not timbre.

Conclusion: These findings point to a causal role of the cerebellum in at least certain aspects of sound processing and
are important in a clinical perspective helping understanding the impact of cerebellar lesions on sensory functions.
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Background
The cerebellum is traditionally considered a “motor con-
troller” and its role in the acquisition of motor skills is
well established [1, 2]. Nevertheless, accumulating evi-
dence suggests that the cerebellum may play a critical
role in non-motor functions, contributing to cognitive
and emotional processing [3–6]. In particular, a cerebel-
lar involvement has been found in high-order cognitive
processes such as language [7], working memory [8],
and spatial processing [9, 10]. Furthermore, the cerebel-
lum seems to play a role in the generation of sensory
predictions [11, 12], optimising perception [13]. Accord-
ingly, patients with cerebellar lesions are often impaired in
processing visual information, such as in deciding speed
and direction of moving stimuli [14]. Neuroimaging evi-
dence also shows that the cerebellum is significantly active
in neurologically unimpaired individuals during sensory
discrimination, such as visual (and auditory) motion dis-
crimination [15]. Also, interfering with cerebellar activity

via brain stimulation has been found to impact on visual
processing [16, 17].
The cerebellum is also involved in auditory processing,

where it plays a critical role in timing [18–21]. Cerebellar
activations have also been observed in healthy subjects
during passive listening of both music [22, 23] and speech
[24, 25]. Moreover, pitch discrimination and melody dis-
crimination [26–28], as well as sound intensity and dur-
ation discrimination [29], activate cerebellar regions. For
instance, Petacchi and colleagues [23] showed that cere-
bellar activity significantly increased during a pitch dis-
crimination task compared to passive listening, with the
cerebellum responding more when the difficulty of the
discrimination to be performed increased. Importantly,
cerebellar activity during auditory discrimination tasks has
been consistently observed even in the absence of any
motor or cognitive component [30]. Patients’ findings sup-
port evidence obtained in healthy individuals: cerebellar
disorders are often associated to deficits in melody recog-
nition [31], in discriminating small differences in sound
duration [32] and in pitch discrimination [33].
Although there is considerable evidence that the cere-

bellum contributes to auditory perception [30], the pre-
cise role of the cerebellum in different aspects of sound
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processing is not completely clear. In particular, whilst
neuroimaging [23, 30] and patients’ [33] studies converge
in indicating a role of the cerebellum in pitch processing,
whether the cerebellum also contributes to other sound
features such as timbre (i.e., the property of a sound which
allows a person to distinguish musical instrument when
pitch, loudness and duration remain identical), is less
clear. Indeed, whereas some neuroimaging studies re-
ported significant cerebellar responses to sound timbre
[34, 35], in other studies investigating timbre processing
cerebellar activations were not considered [36].
The aim of this study was to analyse the role of the cere-

bellum in pitch and timbre processing using transcranial
magnetic stimulation (TMS). While neuroimaging tech-
niques provide correlational evidence regarding the
activation in a specific brain region during an ongoing
cognitive process, TMS allows establishing the causal
role of specific cortical areas in a given task [37, 38].
Moreover, participants in TMS experiments act as their
own controls overcoming some of the limitations intrinsic
in patients’ studies, such as potential differences in pre-
morbid ability, and variability depending on high hetero-
geneity of lesions’ sizes and gravity. Specifically, in this
study we applied off line low frequency repetitive TMS to
induce transient suppression of cerebellar activity [39, 40]
before participants’ performance in a pitch and timbre dis-
crimination tasks. If the cerebellum is causally involved in
pitch and timbre processing, participants should perform
worse following real than sham (faked) stimulation.

Methods
Participants
Fourteen participants (9 F; mean age = 21.93 ys; SD = 1.86)
took part in the experiment. All participants were right-
handed [41] and had less than 3 years of formal musical
training, as revealed by a self-reported history of musical
experience. Prior to the experiment, each participant filled
in a questionnaire (translated from Rossi et al. [42]) to
evaluate compatibility with TMS. None of the volunteers
reported neurological problems, familiarity for seizures
nor was taking any medication that could interfere with
neuronal excitability. Written informed consent was
obtained from all participants before the experiment. The
protocol was approved by the local ethical committee.
Participants’ treatment was conducted in accordance with
the Declaration of Helsinki.

Stimuli
Stimuli used in the pitch discrimination task consisted
of 21 pure tones (i.e., tones with a sinusoidal waveform,
where the wave consists of a single frequency) of
200 ms generated through the software Audacity
(http://audacity.sourceforge.net/). All tones had a fre-
quency comprised between 1000 and 1200 Hz, and

were presented at a level of 75 dB SPL. Stimuli used
in the Timbre discrimination task consisted of 21
complex tones of 200 msec duration. Sound files in
the timbre task were created from digitized samples
of real musical instruments, with all instruments be-
longing to the wind or string family. Sound files used
in the timbre task were taken from the University of
Iowa Musical Instrument Samples (Lawrence Fritts,
http://theremin.music.uiowa.edu/MIS.html).

Procedure
Figure 1 shows the experimental paradigm (Fig. 1a) and
the timeline of an experimental trial (Fig. 1b). Partici-
pants seated comfortably in a dimly lit room and stimuli
were binaurally delivered through professional head-
phone (Sennheiser HD 280 Pro headphone). Each sub-
ject took part in two different sessions (Real and Sham)
that were separated by an average of 6 days (range 5–7).
In each session, participants performed both the pitch
discrimination task and the timbre discrimination task
twice: once before, and once after receiving 15 min of
off-line 1Hz rTMS over the right cerebellum. During
TMS, no task was performed and participants were
instructed to minimise movements and be silent. The
post-stimulation task started immediately after the end
of the stimulation. Both the pitch and timbre discrimin-
ation tasks required participants to indicate by left/right
key pressing using their dominant hand whether two
consecutively presented sounds (separated by 1 sec of
silence interval) were identical or different. Participants
were instructed to respond as fast and as accurately as
possible. Intertrial interval was 2 sec. In each task, 42
sounds were presented: in half of the trials the two
sounds to be compared were identical, in the other half
they were different. In the different trials of the pitch
task, the second pure tone presented could be 20, 30 or
40 Hz higher (ascending trials) or lower (descending tri-
als) compared to the first one. The number of descend-
ing and ascending trials was counterbalanced. In the
timbre task, the two sounds to be compared in each trial
were identical in terms of frequency and intensity, but
they had different timbre. In particular, two different
string sounds may be presented, or two different wind
sounds (wind and string sounds were never presented in
the same trial to avoid ceiling effects in recognition).
Task order (pitch and timbre discrimination), TMS con-
dition order (Real vs. Sham), and the response key
assignment for same/different response were counterba-
lanced across participants. The software E-prime 2.0
(Psychology Software Tools, Pittsburgh, PA) was used
for stimuli presentation, data collection and TMS trig-
gering. Pre and post-stimulation task sessions lasted
approximately 10 min (5 min for each task).
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Transcranial magnetic stimulation
TMS was administered over the right cerebellum by
means of a Magstim Rapid2 machine (Magstim Co Ltd,
Whitland, UK) with a 70 mm butterfly coil. An air-
cooled coil was used, in order to avoid coil overheating.
A fixed intensity of 45 % of the maximum stimulator
output was used, in line with prior studies [43]. The
right cerebellar hemisphere was targeted in light of pre-
vious evidence pointing to a right lateralized cerebellar
activation during timbre processing [35], whereas pitch
discrimination seems to induce bilateral cerebellar acti-
vations [23]. The right cerebellum was localised in each
participant as the region located 1 cm under and 3 cm
lateral to the inion as in prior studies [44, 45]. Prior studies
using neuronavigated TMS have demonstrated that this
point lies over the cerebellar hemisphere [17, 46]. The coil
was placed over the right cerebellum with the handle point-
ing upward, parallel to the inion-nasion line [44, 47]. Previ-
ous studies have shown that rTMS at 1 Hz temporarily
reduces the excitability of the stimulated cortex for a time
window that outlasts the period of stimulation [39, 40].
Sham stimulation was conducted with the coil held at a 90°
position in order to ensure that the magnetic field did not
stimulate the target area. The stimulation paradigm in the
sham condition was the same as that of real rTMS
stimulation.

Statistical analyses
Analyses were performed on mean accuracy scores and on
mean reaction times (RT) for correct responses. Prior to
analyses, reaction times 3 s.d.’s above or below the partici-
pants’ mean were removed (this corresponded to 1.33 %
and 1.99 % of the trials in the pitch and timbre discrimin-
ation task, respectively). A repeated-measures analysis of
variance (ANOVA) with TMS condition (real vs. sham) and
Session (pre-stimulation vs. post-stimulation) as within-
subjects factors was performed separately for the pitch and
the timbre discrimination task on accuracy scores and cor-
rect RT. Bonferroni-Holmes correction was applied to
post-hoc comparisons.

Results
Pitch discrimination task
Mean accuracy was above 73 % (SD = 9 %) in all the
experimental conditions. Analysis on accuracy scores re-
vealed no significant main effects of TMS, F(1,13) = 3.75,
p = .08, ηp

2 = .22, and of Session, F(1,13) = 1.47, p = .25,
ηp
2 = .10. The interaction TMS by Session was not signifi-

cant, F(1,13) < 1, p = .92, ηp
2 = .00. Mean correct RT are

shown in Fig. 2. The ANOVA on correct RT showed no sig-
nificant main effect of either TMS, F(1,13) = 1.30, p = .27,
ηp
2 = .09, or Session, F(1,13) = 2.86, p = .11, ηp

2 = .18. The
interaction TMS by Session was significant, F(1,13) = 8.08,

Fig. 1 a The experimental paradigm: participants underwent two experimental sessions, one with real TMS, and the other with sham TMS (order
of sessions counterbalanced). In each session, participants performed the task twice, once before and once after receiving 1 Hz repetitive 15 min
TMS over the right cerebellum. b The timeline of an experimental trial. In the pitch discrimination task the two sounds were pure tones only differing
for pitch. In the timbre discrimination task the two sounds were tones of the same instrumental family (wind vs. string) presented at the same high
frequency and differing only in their timbre characteristic
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p = .01, ηp
2 = .38. Post-hoc t-tests revealed that participants

were significantly faster in responding in the post-sham
stimulation session compared to the pre-sham stimulation
session, t(13) = 3.52, p = .016, reflecting learning effects. In
turn, RT were comparable between pre-real and post-real
stimulation sessions, t(13) = .63, p = .54, suggesting that real
TMS interfered with learning. Moreover, whilst RT were
comparable in the sham and real pre-sessions, t(13) = 1.24,
p = .24, indicating a similar level of baseline performance,
participants tended to be slower following real, t(13) = 2.31,
p = .09 (p = .03 uncorrected), than sham TMS.

Timbre discrimination task
Mean accuracy was above 82 % (SD = 9 %) in all the ex-
perimental conditions. The ANOVA on accuracy scores
revealed no significant main effect of either TMS,
F(1,13) = .50, p = .49, ηp

2 = .04, or Session, F(1,13) = .16,
p = .22, ηp

2 = .12. The interaction TMS by Session was
not significant, F(1,13) < 1, p = .99, ηp

2 = .00. Figure 3
shows mean participants’ correct RT. The ANOVA re-
vealed a significant main effect of Session, F(1,13) = 4.95,
p = .04, ηp

2 = .28: participants were overall faster in the
post-stimulation session (irrespective of stimulation being
real or sham), reflecting learning effects. Neither the main
effect of TMS, F(1,13) = .03, p = .87, ηp

2 = .00, nor the inter-
action TMS by Session, F(1,13) = .57, p = .46, ηp

2 = .04,
reached significance.

Discussion
In this study we aimed to shed light on the possible
causal role of the cerebellum in auditory processing, and
in particular in pitch and timbre discrimination, in light

of prior neuroimaging and patients’ data suggesting a
cerebellar involvement in processing of music and single
sound features [31–33, 48]. We found that interfering
with cerebellar excitability via offline low frequency
TMS significantly affected pitch discrimination, whereas
it had no effect on timbre discrimination. In particular,
in the pitch discrimination task real TMS counteracted
learning effects that emerged in the other experimental
conditions as faster responses in the post compared to
the pre stimulation sessions.
Our findings are consistent with prior neuroimaging

and neuropsychological evidence suggesting that the
cerebellum is involved in perceptual tasks [8, 49, 50],
possibly monitoring the incoming sensory events to
optimize perception [13, 51]. More specifically, our data
add to previous studies that showed that discrimination
of pitch and melody elicit activation of cerebellar regions
[26, 28, 33], pointing to a causal role for the (right) cere-
bellum in processing pitch. Accordingly, resting state
fMRI has shown functional connectivity between bilat-
eral anterior cerebellum and the auditory cortex in the
temporal lobes [52]. In line with this, the cerebellum
and the lateral anterior temporal lobe appeared to be
bidirectionally interconnected during a rhyming judg-
ment task [53]. More in general, consistent evidence
suggests that the cerebellum projects not only to motor,
but also to somatosensory areas [6]. Still, it is important
to consider that the type of stimulation we used may
have only affected posterior cerebellar regions, given the
deep position of the cerebellum [54]. Indeed, coil geom-
etry seems to be an important factor in determining
effective stimulation of deep cerebellar regions, with the

Fig. 2 Mean response latencies for correct responses as a function of TMS (Real vs. Sham) and Session (Pre vs. Post stimulation) in the Pitch
discrimination task. Participants were significantly faster (as indicated by the asterisk) in the post compared to the pre session when sham TMS was
delivered, reflecting learning effects. RT were comparable in the pre and post real TMS sessions, suggesting that real TMS affected learning effects.
Error bars represent ±1 SEM

Lega et al. Cerebellum & Ataxias  (2016) 3:6 Page 4 of 7



figure of eight coil likely being suboptimal when target-
ing motor areas [54]. Nonetheless, cerebellar stimulation
parameters similar to ours significantly affected percep-
tual [16] and cognitive (for instance, linguistic) functions
in prior studies (e.g. [55, 56]), suggesting that the stimu-
lation we used was able to interfere with neural activity
in the cerebellar-cortical network subtending discrimin-
ation of sound features.
Although prior neuroimaging evidence also suggested

a possible role for the cerebellum in timbre processing
[34, 57], we did not find evidence for this in our study.
On the one hand, the lack of TMS effect in the timbre
discrimination task ensures that the effects we reported
in the pitch discrimination task were not due to unspe-
cific effects of TMS slowing down responses regardless
of the specific task at play. On the other hand, it is pos-
sible that real TMS affects auditory discrimination task
only when the task has a certain level of complexity. Per-
formance accuracy was indeed overall higher in the
timbre than in the pitch task. This is in line with prior
literature showing that non-musicians are more sensitive
in sound categorization to changes in timbre than to
changes in pitch [58]. Interestingly, previous studies
demonstrated a positive correlation between cerebellar
activation and task difficulty [15, 23, 28, 59]. Moreover,
the right cerebellum may be more important than the
left in difficult auditory discrimination [57].
In interpreting our data, it is also worth mentioning

that pitch and timbre processing may have a different
degree of lateralization in the brain. There is evidence
for a right hemisphere dominance in the temporal lobes
for musical timbre discrimination [60, 61] related to a

right hemispheric specialization in processing spectral
sound features, that are critical for discriminating timbre
differences [62–64]. In line with these findings, the left
cerebellum may be more important than the right in
timbre processing (cerebral cortex fibers mainly project-
ing to the contralateral cerebellar cortex [65]). However,
other studies in infants [66] and in adults [35, 67] re-
ported left hemispheric cerebral cortex engagement
underlying perception of timbre change. Moreover,
Reiterer and colleagues [35] showed a right cerebellar
activation during timbre processing, speculating that
pre-linguistic sound features (including timbre) may be
represented by a complex network that connects Broca’s
area and the right cerebellum. In turn, previous neuro-
imaging studies mainly indicate bilateral cerebellar acti-
vation during pitch processing [23, 26–28, 30, 34],
although some degree of lateralization may occur
depending on task complexity [29, 57, 68]. Evidences are
thus not entirely consistent regarding lateralization of
timbre and pitch processing. Future studies may address
this issue by comparing the effect of left and right cere-
bellar stimulation on auditory discrimination.

Conclusions
In sum, our findings show that the (right) cerebellum
plays a causal role in pitch processing. Future research is
needed to better clarify the role of cerebellum in other
aspects of auditory processing, such as rhythm or com-
plex melody recognition and discrimination. Moreover,
level of expertise in determining the involvement of the
cerebellum in auditory functions deserves consideration.
In fact, prior studies showed greater engagement of the

Fig. 3 Mean response latencies for correct responses as a function of TMS (Real vs. Sham) and Session (Pre and Post stimulation) in the Timbre
discrimination task. Participants were overall faster in the post compared to the pre session, reflecting learning effects. The type of stimulation
(Real vs. Sham) did not affect performance. Error bars represent ±1 SEM
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cerebellum in rhythm perception and synchronization in
musicians compared to non-musicians [69, 70]. Musi-
cians have been found to detect pitch changes and
rhythmic irregularities faster and more accurately than
non-musicians [71–73], an ability that may also depend
on different cerebellar involvement. The relation
between level of expertise and cerebellar involvement in
perceptual functions is an important topic to which
brain stimulation may significantly contribute. Finally,
our results are important in a clinical perspective help-
ing understanding the impact of cerebellar lesions on
sensory and cognitive functions.
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