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Abstract

Background: Mutations in the Inositol 1,4,5-Trisphosphate Receptor Type 1 (ITPR1) gene cause spinocerebellar
ataxia type 29 (SCA29), a rare congenital-onset autosomal dominant non-progressive cerebellar ataxia. The Māori,
indigenous to New Zealand, are an understudied population for genetic ataxias.

Case presentation: We investigated the genetic origins of spinocerebellar ataxia in a family of Māori descent
consisting of two affected sisters and their unaffected parents. Whole exome sequencing identified a pathogenic
variant, p.Thr267Met, in ITPR1 in both sisters, establishing their diagnosis as SCA29.

Conclusions: We report the identification of a family of Māori descent with a mutation causing SCA29, extending
the worldwide scope of this disease. Although this mutation has occurred de novo in other populations,
suggesting a mutational hotspot, the children in this family inherited it from their unaffected mother who was
germline mosaic.
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Introduction
The autosomal dominant spinocerebellar ataxias (SCAs)
are a heterogeneous group of neurodegenerative disor-
ders that cause cerebellar ataxia and degeneration of the
cerebellum and brainstem. These genetic diseases have
nearly 50 known subtypes characterized with extra-
cerebellar central nervous system manifestations varying
by specific genetic type [1]. Spinocerebellar ataxia type
29 (SCA29) is a rare congenital-onset autosomal domin-
ant non-progressive cerebellar ataxia caused by muta-
tions in the inositol 1,4,5-triphosphate receptor type 1
(ITPR1) gene characterized by early-onset hypotonia,
gross motor delay, and mild cognitive impairment [2–6].
Distinct mutations in the same gene are also associated
with SCA type 15 and Gillespie syndrome [1, 4].
The Māori are the indigenous people of New Zealand,

currently representing approximately 15% of the total
population of the country (http://worldpopulationreview.

com/countries/new-zealand/). To date, there is limited
genomic information from this population publically
available, and no comprehensive analysis of spinocere-
bellar ataxia causes has yet been performed. Here, we
describe the genetic analysis of two siblings in a family
of Māori descent presenting with congenital-onset non-
progressive ataxia by whole exome sequencing (WES).

Case report
The Institutional Review Board of UCLA approved all
methods for this study. The family was identified during
routine clinical evaluation in their native country of New
Zealand. The affected sisters (Fig. 1) exhibited non-
progressive ataxia with onset from early infancy. The
oldest sister was observed to have early delated motor
milestones and first walked with crutches at age 7 years.
Speech was also delayed with first word at age 5.5 years.
By school age, learning difficulties were noted and for-
mal assessment of IQ was 54. Neurological examination
as an adult in her mid-forties was notable for strabismus,
horizontal nystagmus, and hypermetric saccades to the
left with hypometric saccades to the right (saccades were
mildly misdirected). Speech exhibited a scanning dys-
arthria. Motor and sensory systems were intact although
tone was decreased and there was a mild tremor. Limb
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and gait ataxia were present. MRI of the brain showed at-
rophy of the cerebellum. The younger sister also had early
delated motor milestones and first walked with crutches
at age 3.5 years. Speech was also delayed with first word at
age 3 years. By school age, mild learning difficulties were
noted as well and IQ was measured at 73. Neurological
examination as an adult in her early-forties was similar to
that her sister. MRI of the brain was not performed.

Diagnostic evaluation
The family received comprehensive clinical evaluations
for acquired causes of ataxia [7] and, after genetic coun-
seling, provided written informed consent for participa-
tion in this research study. The two affected sisters
tested negative for common genetic ataxias (SCA1,
SCA2, SCA3, SCA6, SCA7, and SCA36). Genomic inves-
tigation for causes of spinocerebellar ataxia was per-
formed using whole exome sequencing (WES) on all
four members of the family (Fig. 1). The Nextera Rapid
Capture Exome Kit (Illumina, San Diego, CA) was used
to prepare the genomic DNA (gDNA) libraries. gDNA li-
braries were sequenced on the HiSeq 2500 sequencer in
the rapid-run mode (Illumina, San Diego, CA) as 107-bp
paired-end reads. Burrows-Wheeler Aligner (BWA) [8]
was used to align sequencing data to the hs37d5 refer-
ence and SAMtools [9] was used to post-process the
alignment data. Picard Tools (https://broadinstitute.
github.io/picard/) was used to compute sequence

alignment statistics and marked duplicate reads. Variants
were called based on the Broad Institute’s Genome Ana-
lysis Toolkit (GATK) version 3 best practices [10, 11].
Family relationships were confirmed by the relatedness
algorithm from VCFtools [12]. Variants were annotated
with VarSeq (Golden Helix, Inc., Bozeman, MT, www.
goldenhelix.com). Variants were classified based off the
American College of Medical Genetics and Genomics
(ACMG) guidelines [13].
Exome sequencing identified a pathogenic variant in the

ITPR1 gene present in both affected sisters. The ITPR1
variant (hg19:chr3:4687357C >T, p.Thr267Met) was previ-
ously reported as occurring de novo or sporadically [3–5]
and is not present in the ExAC (exac.broadinstitute.org) or
gnomAD (gnomad.broadinstitute.org) public databases of
human variation. In HEK293 cells [5] and in IP3R triple
knockout HeLa cells [6], the p.Thr267Met variant showed
reduced IP3-induced Ca2+ release suggesting it is a loss
of function mutation. Although observed in multiple
families [3–5], this variant has not previously been re-
ported as inherited through the germline. WES in our
data indicated that the variant was present at low
level (2/242 reads) in the unaffected mother suggest-
ing she is germline mosaic for the variant.

Discussion and conclusions
There is little published information about genomic vari-
ation in the New Zealand Māori population and the

Fig. 1 Family Pedigree. Pedigree of the family presented in this report. Proband is indicated by an arrow. Shaded symbols represent affected
individuals. A dot indicates germline mosaicism. Genotypes of the c.800 position in ITPR1 are shown under each patient sequenced. C is reference
and T is p.Thr267Met variant
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prevalence of spinocerebellar ataxia in this population
has not been fully studied. To date, there have been 6 re-
ported families with Māori ancestry and spinocerebellar
ataxia [14–16]. Thus far, patients have been reported
with cerebellar ataxia, neuropathy, and vestibular are-
flexia syndrome (CANVAS) [14], hereditary spastic para-
plegia type 7 [15], and autosomal recessive spastic ataxia
of Charlevoix-Saguenay [16]. Mutation of the ITPR1
gene is associated with two distinct ataxic phenotypes, a
progressive adult-onset form characterized primarily by
gait and limb ataxia, termed Spinocerebellar Ataxia Type
15 (SCA15), and a congenital non-progressive form as-
sociated with intellectual disability (SCA29) [1, 4]. Here,
we provide the first report of SCA29 in a family of
Māori ancestry originating from New Zealand. The iden-
tified p.Thr267Met mutation was germline inherited
from the unaffected Māori mother who is mosaic. The
observation of this same variant occurring in multiple
families of different ethnic origin, including now the
Māori population of New Zealand, suggests this site may
be a mutational hotspot within ITPR1. This is supported
by a recent study that identified this variant as part of a
rare cluster of missense mutations found within the
ITPR1 gene [17]. Our findings expand the prevalence
and underlying genetic etiology of SCA29. Given the ab-
sence of ataxia in other members of the large extended
maternal family, we speculate that this mutation oc-
curred within the mother during her early development,
resulting in the presence of the mutation in the germline
and at a low level in the blood and perhaps other tissues,
but sparing her of the neurological phenotype. We have
previously observed parental mosaicism in other SCA29
families, both maternally (p.Gly2506Arg) [4] and pater-
nally (p.Arg269Trp, unpublished observation), suggest-
ing that it may be clinically informative to assess the
parents of a child with SCA29 for mosaicism to aid in
appropriate genetic and reproductive counseling.
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