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Abstract

Background: Autism is a neurodevelopmental disorder that is first manifested during early childhood. Postmortem
experiments have identified significantly elevated expression of metabotropic glutamate receptor 5 (mGIuR5) in cerebellar

vermis and prefrontal cortex of individuals with autism.

Methods: In the current study we employed the mGIuR5 tracer ['®F]-3-fluoro-5-[(pyridin-3-yl)ethynyllbenzonitrile
(["®F)-FPEB) to quantify mGIuR5 binding in vivo in adults with autism vs. healthy controls using positron emission

tomography (PET).

Results: We identified significantly higher ['®F]-FPEB binding potential in the postcentral gyrus and cerebellum of
individuals with autism. There was a significant negative correlation between age and ['®F]-FPEB binding potential in
the cerebellum but not in the postcentral gyrus. In the precuneus, ['®FI-FPEB binding potential correlated positively
with the lethargy subscale score for the Aberrant Behavioral Checklist (ABC). In cerebellum, there were significant
negative correlations between ['®F]-FPEB binding potential and ABC total score, ABC hyperactivity subscale score,

and the ABC inappropriate speech subscale score.

Conclusions: These novel findings demonstrate for the first time that mGIuR5 binding is altered in critical brain
areas of subjects with autism, suggesting abnormal glutamate signaling in these regions. Finally, the correlations
between altered ['®F]-FPEB binding potential in the cerebellum and precuneus suggest that some autistic symptoms

may be influenced by abnormal glutamate signaling.
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Background

Autism is a severe neurodevelopmental disorder with a
rising incidence of 14.7 per 1000 (1 in 68) in the United
States [1]. Autism is characterized by impairments in so-
cial communicative behavior and patterns of repetitive
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behavior [2]. Due to the heterogeneous nature of autism,
the identity of autism-specific biomarkers remains elusive.
Nevertheless, much of the focus has been placed on inves-
tigating neurotransmitter systems in the brains of subjects
with autism. One of them, glutamate is the primary excita-
tory neurotransmitter in brain and spinal cord and is im-
portant in brain development and neuroplasticity [3].
Multiple studies have demonstrated elevated levels of glu-
tamate in plasma of both adults and children diagnosed
with autism when compared with controls [4—6]. Further-
more, magnetic resonance spectroscopy (MRS) studies
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have identified higher levels of glutamate in multiple brain
regions of children and adolescents with autism including
the anterior cingulate cortex (ACC), left striatum, left cere-
bellar hemisphere, and left frontal lobe [6, 7]. In contrast,
reduced levels of the main inhibitory brain neurotransmit-
ter, gamma-aminobutyric acid (GABA), have been observed
in multiple brain regions of subjects with autism including
the temporal lobe (auditory cortex), primary motor cortex,
and postcentral gyrus (somatosensory cortex) [8—10]. These
findings suggest that there is an imbalance in excitatory/in-
hibitory neurotransmission in the brains of subjects with
autism. This imbalance could potentially explain the im-
pairments that define the core symptoms of autism [11].

Accumulating data has implicated metabotropic glutam-
ate receptor 5 (mGIuR5) in the pathology of autism
spectrum disorders [12—14]. Postmortem experiments have
demonstrated increased expression of dimerized and total
mGluR5 in cerebellar vermis and superior frontal cortex
[Brodmann Area 9 (BA9)] in children with autism [12, 13].
In vitro binding assays employing [*H]-labeled 3-methoxy-
5-pyridin-2-ylethynylpyridine (MPEPy) in prefrontal cortex
tissue homogenates from subjects with fragile X syndrome
(EXS) vs. controls found a marginally significant increase in
mGIuR5 density (p<0.058) in subjects with FXS [14].
These findings are important in light of proposed treat-
ments for autism [15] as well as schizophrenia and affective
disorders [16] via the modulation of mGIuR5 activity. If
successful, mGluR5 modulation may improve symptoms of
psychiatric disorders including autism in patients who have
not improved via currently available treatment modalities.

The current study represents the first time that
positron emission tomography (PET) imaging has
been used to determine mGIluR5 binding in vivo in
brains of adults with autism and controls, using
[*®F]-3-fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile
([*®F]-FPEB), a potent, selective, and systemically ac-
tive antagonist of mGIuR5 [17]. We aimed to investi-
gate if mGIuR5 expression in vivo replicated the
results obtained by postmortem experiments and
whether these changes (if any) positively correlated
with autism symptom severity.

Methods

Patient recruitment

All study procedures were approved by the Johns Hopkins
University Institutional Review Board (IRB) and all en-
rolled study subjects signed and dated IRB-approved con-
sent forms. Informed consent was obtained from all
individual participants included in the study. People with
autism (7 =6) were recruited from a sample of children
who had previously completed separate investigations at
the Kennedy Krieger Institute (Baltimore, MD). Healthy
control volunteers (n =3) were recruited from the sur-
rounding community via IRB-approved advertisements.
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Two historic controls, who had previously participated in a
PET study conducted at Johns Hopkins University (JHU)
were included. One of the historic controls could not be
reached to complete new bloodwork and the Structured
Clinical Interview for DSM-IV Axis I disorders — Clinician
Version.

Patient screening

All subjects were first screened using an IRB-approved
telephone script to determine if they met the inclusion and
exclusion criteria for the study. Additionally, all potential
study subjects provided a complete medical and medica-
tion history, underwent a physical exam, vital signs, labora-
tory tests, and a 12-lead electrocardiogram (ECG). All
study subjects (except for one historical control) under-
went the Structured Clinical Interview for DSM-IV Axis 1
disorders — Clinician Version (SCID-CV) [18] in order to
determine if they presented with psychiatric disorders.
Autistic symptoms were determined by scores on the
Autism Diagnostic Observation Schedule (ADOS) [19], the
Autism Diagnostic Interview-Revised (ADI-R) [20], Autism
Spectrum Screening Questionnaire (ASSQ) [21], the
Clinical Global Impression (CGI) [22], the Aberrant
Behavior Checklist (ABC) [23], the Lifetime Social
Communication Questionnaire (SCQ) [24], and the Global
Assessment of Functioning (GAF) [25, 26]. ADI-R and
ADOS scores were obtained when the subjects with autism
were children and were provided by the Kennedy Krieger
Institute. SCID-5-CV, ASSQ, GCI, ABC, and GAF scores
were obtained during patient screening.

Inclusion criteria for people with autism included: 1)
male or female subjects, 18-35 years old; 2) previous diag-
nosis of autism spectrum disorder based on ADI-R and
ADOS criteria; 3) weight of at least 100 lbs. (45.4 kg); 4)
absence of other major serious, current medical, psychi-
atric, or neurologic issues other than autism and its comor-
bid deficits (i.e., seizure disorder, intellectual impairment).
Subjects with comorbid diagnoses of attention deficit
hyperactivity disorder (ADHD), obsessive compulsive dis-
order (OCD), or anxiety disorder were not excluded as
there are high rates of comorbidity of these conditions in
individuals diagnosed with autism [27, 28]; 5) provision of
informed consent for testing from subject or an authorized
decision maker. Inclusion criteria for healthy controls in-
cluded the following: 1) male and female subjects, aged
18-35 years old, in good physical health; 2) have clinical la-
boratory test results within the reference ranges for the
population or results within acceptable deviations that are
not considered by the investigators to be clinically signifi-
cant; 3) absence of other serious, current comorbid psy-
chiatric disorders as determined by the SCID-CV; and 4)
provision of written informed consent and ability to com-
ply with the study restrictions. Exclusion criteria for
people with autism and healthy controls were as follows:
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1) change in behavioral treatments or life change such as
change in residence, work site, or community service pro-
vider (within the past month); 2) pregnant or lactating
women; 3) diagnosis of Tourette syndrome, FXS, or Rett
syndrome; 4) patients with significant self-injury or with
severity requiring inpatient treatment; 5) concurrent other
psychiatric illness including substance abuse, or severe
systemic disease based on history and physical exam; 6) la-
boratory tests with clinically significant abnormalities; 7)
prior participation in other research protocols or clinical
care in the last year such as radiation exposure that would
exceed the annual limits; 8) suffer from claustrophobia
and would be unable to undergo magnetic resonance im-
aging (MRI) or PET scanning; 9) implanted or embedded
metal objects, prostheses, or fragments in the head or
body that would present a risk during the MRI scanning
procedure; 10) clinically significant abnormal MRI; 11)
positive human immunodeficiency virus (HIV) test; 12) al-
cohol consumption within 48 h before the PET scan; 13)
currently a user of any illicit drugs or alcohol abuse, or
has a positive drug screen; 14) BMI of > 40 kg/m? 15) use
of prescription stimulants in the two days before the PET
scan; 16) currently on medications that affect the glutam-
ate system.

MRI

Subjects, who met the enrollment criteria following the
initial screening assessments, underwent an MRI scan
with a set format of structural sequences including a
spoiled gradient recalled (SPGR) acquisition sequence
(124 slices with image matrix 256 x 256, pixel size
0.93 x 0.93 mm, slice thickness 1.5 mm) imaging for a
three-dimensional anatomical data set of the brain [29]
using a 3-T Magnetom Trio scanner (Siemens Medical
Solutions). The MRI scans were obtained on each sub-
ject in order to co-register PET and MRI images for ana-
lysis of PET data.

"8E_FPEB preparation
'SE_-FPEB was prepared at high specific activity as previ-
ously described [17].

PET scan

All PET scans were performed at the JHU PET Center
using a second-generation, High-Resolution Research
Tomograph (HRRT; CPS Innovations, Inc.) (2 mm axial
resolution). A venous catheter was placed prior to the scan
for radiotracer injection. Approximately 10 min before
'8E_FPEB injection, a transmission scan was acquired for
attenuation correction. Subjects were administered
intravenously approximately 185 megabecquerel (MBq)
[5 mCi (mCi)] [*®F]-FPEB dose in saline. Dynamic PET
scans of the brain began immediately after [**F]-FPEB
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administration and images were acquired for 90 min after
tracer administration.

Statistical analysis

Quantitative analysis of the non-displaceable binding po-
tential (BPxp) of [*°F]-FPEB was obtained to measure the
density of the mGIuR5 availability (B,,,,) in selected brain
regions. Cerebellar white matter was defined as the refer-
ence tissue for ['®F]-FPEB. We determined volumes of
interest (VOIs) based on co-registered MRI and PET scans
for analysis with a multilinear reference tissue, two param-
eter model. Brain regional BPyps were obtained. Descrip-
tive and analytical methods for small samples were
employed. To determine differences in binding potential
of [*®F]-FPEB between individuals with autism vs. con-
trols, two-tailed student’s t-tests were run for each of the
brain regions with significance set at p < 0.05. Two-tailed
Pearson correlations were calculated to determine poten-
tial relationships between ['**F]-FPEB binding potential
and measures of autistic symptoms and scores on psycho-
metric tests in subjects with autism.

Results
A total of six individuals with autism were used for data
analysis. Three control individuals were included, two of
whom had previously been scanned with ['®F]-FPEB as
part of an earlier study. The mean age of controls was
27 £ 3.61 and the mean age of subjects with autism was
20 +£2.10 (p <0.0067). All subjects with autism and con-
trols were male. With regard to race, for the controls
one was white, one was African American, and one was
Asian American. For the subjects with autism five were
white and one was Asian American. Table 1 summarizes
demographic data and Table 2 summarizes mean scores
for the study subjects on measures of autistic pathology.
['8F]-FPEB binding potential was measured in 21
brain regions, all of which are known to express
mGluR5 [17, 30-37] and have previously been impli-
cated in the pathology of autism [38-46]. We identi-
fied significantly elevated ['®*F]-FPEB binding potential
in cerebellum (p < 0.016) and postcentral gyrus (p < 0.036),
indicating increased mGluR5 binding in these brain re-
gions (Table 3, Fig. 1). Moreover, we identified trends to-
wards significant elevation of ['*F]-FPEB binding
potential in the entorhinal area (p < 0.065) and the pre-
cuneus (p<0.071) (Table 3, Fig. 1). Because age was
significantly different between controls and subjects
with autism, Pearson correlations were run to analyze
this demographic measure for an effect on ['*F]-FPEB
binding potential. For cerebellum, there was a signifi-
cant negative correlation between age and ['°F]-FPEB
binding potential (r=-0.68, p < 0.042). However, corre-
lations were not significant for postcentral gyrus (r = - 043,
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Table 1 Demographics of study subjects

Control Autism P
Age 27 £361 20£2.10 0.0067
Sex 3M 6 M -
Race TW, 1A TAA, 5W, 1A -

A Asian, AA African American, M male, W white
Italicized value represents a statistically significant finding

p <0.25), precuneus (r = - 0.36, p <0.34) or entorhinal area
(r=-0.38, p<0.32).

In cerebellum, there were significant negative correla-
tions between [**F]-FPEB binding potential and ABC total
score (r=-0.904, p<0.013), ABC hyperactivity subscale
score (r=-0.861, p<0.028), and the ABC inappropriate

Table 2 Measures of autism symptoms of study subjects

Measure Range Autism Score
of scores cutoff score
Autism Diagnostic Observation Schedule (ADOS)
Language and communication (0-12) >3 450 +1.87
total
Reciprocal social interaction (0-18) > 6 8.00 + 354
total
Language and communication (0-30) > 10 12.50 £ 3.90
and reciprocal social
interaction total
Autism Diagnostic Interview-Revised (ADI-R)
Reciprocal social interaction (0-32) > 10 15.83 £5.12
total
Communication total (0-26) > 8 1267 + 408
Restricted, Repetitive and (0-16) > 3 533+ 1.86
stereotyped behavior total
Total (0-70) NA 34.00 = 7.96
Autism Spectrum Screening Questionnaire (ASSQ)
Total (0-54) > 17 1717 £7.88
Aberrant Behavior Checklist (ABC)
Irritability total (0-45) NA 350 + 5.68
Lethargy total (0-48) NA 10.50 + 8.36
Stereotypy total (0-21) NA 150 £1.22
Hyperactivity total (0-48) NA 7.83 + 601
Inappropriate speech total 0-12) NA 1831172
Total (0-174)  NA 2517 £14.27
Clinical Global Impression
Severity of illness (0-7) NA 3.50 £ 1.05
Global Improvement (0-7) NA 317 +£133
Efficacy index (0-16) NA 933 £403
Lifetime Social Communication Questionnaire (SCQ)
Total for verbal children (0-39) > 15 16.17 +£3.92
Global Assessment of Functioning (GAF)
Total (090"  NA 69.83 +9.15

NA not applicable; °For this scale, a higher score indicates better functioning
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Table 3 '8F-FPEB binding potential throughout the brain as
revealed by positron emission tomography (PET)

Region Control Autism t-value P
Amygdala 393 + 064 369 + 057 0.58 0.58
Caudate nucleus 4.28 + 047 4.56 + 0.62 067 0.52
Cerebellum 107 £0.10 1.25 £ 0.068 317 0016
Cingulate 433 +043 442 +0.23 042 0.68
Entorhinal area 1.78 £ 0.71 275+ 059 219 0.065
Frontal lobe 411 £039 428 £0.22 0.87 041
Fusiform gyrus 3.86 = 049 3.69 = 052 047 0.65
Globus pallidus 112+ 0.14 128 £ 0.15 1.58 0.16
Hippocampus 374 £ 067 366 +0.52 0.21 0.84
Insula 458 + 0.62 449 + 051 0.22 0.83
Occipital lobe 322+ 039 335+ 015 0.79 046
Paracentral gyrus 2.89 + 044 336 £0.32 1.83 0.11
Parahippocampus 3.25 £ 0.09 3.55 £ 040 122 0.26
Parietal lobe 393 £ 036 410+ 0.14 1.08 032
Precentral gyrus 355+038 386 £0.12 1.89 0.10
Precuneus 387 +0.24 4.19+£0.20 213 0.071
Postcentral gyrus 344 + 022 382+ 020 2.60 0.036
Putamen 3.90 + 0.54 418 £033 091 039
Temporal lobe 423 £057 423 +030 0.02 1.00
Thalamus 243 +£0.28 250 +£ 029 037 0.72
Ventral striatum 4.75 + 0.66 510+ 050 0.89 040

Italicized values represent significant or near-significant findings
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Fig. 1 ['®F]-FPEB binding potential in selected brain regions. Scatter
plot showing ['®F]-FPEB binding potential in cerebellum, postcentral
gyrus, entorhinal area, and precuneus of subjects with autism vs.
controls. A, autism; C, control; *, p < 0.016; **, p < 0.036; ***, p < 0.065;
#x ) < 0,071
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speech subscale score (r=-0.928, p<0.008) (Fig. 2). In
precuneus, there was a significant positive correlation
between ['*F]-FPEB binding potential and ABC lethargy
subscale score (r = 0.843, p < 0.035) (Fig. 2).

Discussion

We observed significantly elevated [**F]-FPEB binding po-
tential in two brain regions of males with autism: the cere-
bellum (in its entirety) and the postcentral gyrus. We also
observed trends for significantly elevated [**F]-FPEB bind-
ing potential in the precuneus and the entorhinal area. In
subjects with autism, we identified significant, negative cor-
relations between ['*F]-FPEB binding and ABC total score,
ABC hyperactivity subscale score, and ABC inappropriate
speech subscale score in cerebellum. We also identified one
significant positive correlation between [**F]-FPEB binding
and ABC lethargy subscale score in precuneus.

Increased mGIluR5 expression has previously been ob-
served in cerebellar vermis and BA9 of children with
autism [12, 13]. These findings suggest pathologic activa-
tion of mGluR5 which may be prenatal or early postna-
tal. The observed PET data of elevated ['*F]-FPEB
binding potential in young adults with autism supports
this hypothesis. In contrast, a recent study found re-
duced mGIuR5 immunoreactivity in the dorsolateral
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prefrontal cortex (DLPFC) of subjects with autism [47].
However, this finding may be due to the mixing of adult
and child subjects. Additionally, the authors used immu-
nohistochemistry and not western blotting or imaging,
which may account for possible differences between
their results and ours. As shown in the comparison be-
tween age of study subjects and [**F]-FPEB binding poten-
tial, there was a significant negative correlation between
age and ['°F]-FPEB binding potential in the cerebellum,
while there was no effects in the postcentral gyrus, precu-
neus, or the entorhinal area. These results are likely im-
pacted by low sample size. Thus, repetition of these
experiments involving a larger sample is needed to deter-
mine the effect of age on ['*F]-FPEB binding potential.
The negative correlations between ['*F]-FPEB binding po-
tential and ABC total score as well as hyperactivity and in-
appropriate speech subscale scores in the cerebellum
provide some evidence that increased mGIuR5 binding in
autism is not associated with greater symptom severity.
The one positive correlation between [**F]-FPEB binding
and the ABC-lethargy subscore in precuneus is intriguing
given that the precuneus is a principal component of the
default mode network (DMN). The DMN is active when
the individual is engaged in internally focused tasks includ-
ing social cognition, a major impairment in individuals with

a i3
*
_ 13
3
€
§
s
o
o 125
c
g
£
o
o
w12
w
v R=-0.90, P <0.013
145
-
14 . . . . .
0 10 20 30 40 50
ABC Total Score

1.35

1.25

R=-0.86, P <0.028

['®F]-FPEB Binding Potential

0 5 10 15 20
ABC Hyperactivity Subscale Score

Fig. 2 Correlations between ['®FI-FPEB binding potential and scores on psychometric tests. Scatter plots showing correlations between ['*F-FPEB
binding potential and ABC total score (a), ABC inappropriate speech subscale score (b), ABC hyperactivity subscale score (c), and ABC lethargy subscale
score (d) in subjects with autism. a, b, and ¢ ['®F-FPEB binding potentials are from cerebellum; d ['®F]-FPEB binding potential is from precuneus

b 1.35
_ 13
S
€
S
5
[
o 1.25
13
£
£
@
£ 12
a
Y
iy
2 R=-0.93, P <0.008
1.15
1.1 T T T T T ]
0 1 2 3 4 5 6
ABC Inappropriate Speech Subscale Score
d +s
4.4 *
g *
S 43
K
a
2 42
£
&
@ * -
® 41 R=0.84, P <0.035
w
a
%
Lo
3.9
*
3.8

0 5 10 15 20 25

ABC Letharav Subscale Score




Fatemi et al. Cerebellum & Ataxias (2018) 5:3

autism [48]. As reviewed by Padmanabhan et al. [48], there
are structural and functional abnormalities in the DMN of
individuals with autism. Excitatory/inhibitory imbalance as
indicated by changes in levels of glutamate and/or GABA
could potentially impact functioning of the DMN and autis-
tic symptomatology including lethargy as measured by the
ABC. Further studies are needed however, to confirm these
findings.

The four brain regions that showed significant increased
or trends for increased ['®*F]-FPEB binding potential are in-
volved in important cognitive domains that are impaired in
autism including motor control, facial recognition, and
memory [49-55]. The cerebellum plays a crucial role in
learning and control of action through sensorimotor adap-
tation of signals in motor, premotor, and prefrontal cortex
[51, 54]. The postcentral gyrus contains the primary soma-
tosonsory cortex and is thereby crucial to motor control
and learning and facial recognition [50]. The precuneus is
located in the medial parietal cortex and maintains func-
tional connection with the prefrontal cortex [56]. PET stud-
ies have shown precuneus activation during episodic
memory tasks [52, 53]. The entorhinal cortex is the main
region of interaction between the hippocampus and neo-
cortical regions due to its reciprocal connections between
these two areas and is involved with memory [55].

Studies have previously demonstrated functional and
morphological changes in all four of these brain regions in
people with autism [38-40, 42]. A number of motor learn-
ing studies have suggested that people with autism show a
bias towards reliance on proprioceptive (as opposed to vis-
ual) feedback [57-59], with evidence that abnormalities in
the sensorimotor regions of the cerebellum that may con-
tribute to this bias. Our findings provide additional support
for abnormalities in these somatosensorimotor-cerebellar
circuits, crucial to development of skilled actions necessary
in social and communicative behavior. The postcentral
gyrus of subjects with autism has been shown to display re-
duced cortical thickness and reduced gray matter concentra-
tion when compared with controls [42]. Cheng et al. [40],
found that gray matter volume was reduced in postcentral
gyrus while gray matter volume is increased in cerebellum
in subjects with autism vs. controls using voxel-based mor-
phometric analysis. An analysis of whole-brain voxel-based
unbiased resting state functional connectivity found reduced
connectivity in multiple brain regions including left and
right precuneus and left and right postcentral gyrus of sub-
jects with autism [39]. Moreover, functional connectivity
changes in these two regions were significantly associated
with ADOS severity scores. Morphological changes in the
cerebellum of subjects with autism have been identified in-
cluding: 1) altered Purkinje cell density; 2) abnormalities in
deep cerebellar nuclei; and 3) changes in total cerebellar vol-
ume [51]. These changes may contribute to motor and cog-
nitive deficits associated with autism. Small tightly packed
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neurons have been consistently found in the entorhinal cor-
tex of subjects with autism [38]. These anatomical changes,
coupled with potential changes in glutamate signaling, likely
contribute to impaired cognitive domains in autism.

Strengths of the current study include: 1) high reso-
lution tomograph (the HRRT PET scanner is the highest
resolution dedicated brain PET scanner available) with
kinetic modeling; 2) the use of state of the art technology
and one of the most optimal PET radiotracers for mGluR5
human brain imaging; and 3) carefully screened and char-
acterized subjects. Limitations of the current study in-
clude: 1) small sample size; 2) differences in racial/ethnic
diversity; 3) the age differences between subjects with aut-
ism vs. controls; and 4) the lack of inclusion of both sexes.
Of the limitations, small sample size is important and as
we have mentioned previously, further studies using a lar-
ger sample size are needed to confirm our results. The sig-
nificant difference in age between subjects with autism vs.
controls was an important limitation, which moreover had
an effect on [**F]-FPEB binding potential in the cerebel-
lum, but not the postcentral gyrus, precuneus, or entorhi-
nal area. This may be an artifact that is tied to small
sample size. In our previous studies of mGIuR5 expression
in children and adults with autism vs. controls, analysis of
confounds did not find an effect of age on our results for
cerebellar vermis [13]. The differences in racial/ethnic di-
versity between groups are a limitation that is also partially
tied to small sample sizes. It is thus, difficult to determine
whether these differences have an impact on [**F]-FPEB
binding potential. Finally, while autism is more prevalent
in males than in females [60], further studies should in-
clude females as well to ensure that the observed differ-
ences are not sex-specific.

Conclusions

The current study represents the first measurement of
mGluR5 concentration in vivo in young adults with aut-
ism. Our findings partially validated our hypotheses in
that some brain regions displayed significant elevations
in elevated ['®F]-FPEB binding potential and there was
one significant positive correlation between [*®F]-FPEB
binding potential and a symptom of autism. Based on
this pilot study, further experiments measuring mGIluR5
binding in individuals with autism are warranted.
mGIluR5 may prove an important target of therapeutic
intervention in autism spectrum disorders.
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