Munoz DP. Commentary: saccadic eye movements: overview of neural circuitry. In: Progress in Brain Research; 2002. p. 89–96.
Google Scholar
Pierrot-Deseilligny C, Milea D, Müri RM. Eye movement control by the cerebral cortex. Curr Opin Neurol. 2004;17(1):17–25.
Article
PubMed
Google Scholar
Fox PT, Fox JM, Raichle ME, Burde RM. The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study. J Neurophysiol. 1985;54(2):348–69.
Article
CAS
PubMed
Google Scholar
Pierrot-deseilligny CH, Rivaud S, Gaymard B, Agid Y. Cortical control of reflexive visually-guided saccades. Brain. 1991;114(3):1473–85.
Article
PubMed
Google Scholar
Berman RA, Colby CL, Genovese CR, Voyvodic JT, Luna B, Thulborn KR, et al. Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study. Hum Brain Mapp. 1999;8(4):209–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev. 2000;80:953–78 (0031–9333 (Print).
Article
CAS
PubMed
Google Scholar
Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway. Neurosci Res. 2002;43:111–7.
Article
PubMed
Google Scholar
Fisher RS, Buchwald NA, Hull CD, Levine MS. The GABAergic striatonigral neurons of the cat: demonstration by double peroxidase labeling. Brain Res. 1986;398(1):148–56.
Article
CAS
PubMed
Google Scholar
Francois C, Percheron G, Yelnik J. Localization of nigrostriatal, nigrothalamic and nigrotectal neurons in ventricular coordinates in macaques. Neuroscience. 1984;13(1):61–76.
Article
CAS
PubMed
Google Scholar
Handel ARI, Glimcher PW. Quantitative analysis of substantia nigra pars reticulata activity during a visually guided saccade task. J Neurophysiol. 1999;82(6):3458–75.
Article
CAS
PubMed
Google Scholar
Hikosaka O, Wurtz RH. Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. J Neurophysiol. 1983;49(5):1285–301.
Article
CAS
PubMed
Google Scholar
Pouget P. The cortex is in overall control of “voluntary” eye movement. Eye (Lond). 2015;29:241–5.
Article
CAS
Google Scholar
Hanes DP, Wurtz RH. Interaction of the frontal eye field and superior colliculus for saccade generation. J Neurophysiol. 2001;85(2):804–15.
Article
CAS
PubMed
Google Scholar
Baloh RW, Sills AW, Kumley WE, Honrubia V. Quantitative measurement of saccade amplitude, duration, and velocity. Neurology. 1975;25:1065–70.
Article
CAS
PubMed
Google Scholar
Leigh RJ, Kennard C. Using saccades as a research tool in the clinical neurosciences. Brain. 2004;127:460–77.
Article
CAS
PubMed
Google Scholar
Moschovakis AK, Scudder CA, Highstein SM. The microscopic anatomy and physiology of the mammalian saccadic system. Prog Neurobiol. 1996;50:133–254.
Article
CAS
PubMed
Google Scholar
May PJ. The mammalian superior colliculus: Laminar structure and connections. Prog Brain Res. 2005;151:321–78.
Article
Google Scholar
Illing RB, Graybiel AM. Convergence of afferents from frontal cortex and substantia nigra onto acetylcholinesterase-rich patches of the cat’s superior colliculus. Neuroscience. 1985;14(2):455–82.
Article
CAS
PubMed
Google Scholar
Sparks DL, Hartwich-Young R. The deep layers of the superior colliculus. Rev Oculomotor Res. 1989;3:213–55.
CAS
Google Scholar
Schiller PH, Stryker M. Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J Neurophysiol. 1972;35(6):915–24.
Article
CAS
PubMed
Google Scholar
Sparks DL. Functional properties of neurons in the monkey superior colliculus: coupling of neuronal activity and saccade onset. Brain Res. 1978;156(1):1–16.
Article
CAS
PubMed
Google Scholar
Büttner U, Büttner-Ennever JA. Present concepts of oculomotor organization. Prog Brain Res. 2005;151:1–42.
Google Scholar
Yamada J, Noda H. Afferent and efferent connections of the oculomotor cerebellar vermis in the macaque monkey. J Comp Neurol. 1987;265(2):224–41.
Article
CAS
PubMed
Google Scholar
Thielert CD, Thier P. Patterns of projections from the pontine nuclei and the nucleus reticularis tegmenti pontis to the posterior vermis in the rhesus monkey: a study using retrograde tracers. J Comp Neurol. 1993;337(1):113–26.
Article
CAS
PubMed
Google Scholar
Dicke PW, Barash S, Ilg UJ, Thier P. Single-neuron evidence for a contribution of the dorsal pontine nuclei to both types of target-directed eye movements, saccades and smooth-pursuit. Eur J Neurosci. 2004;19(3):609–24.
Article
PubMed
Google Scholar
Noda H, Sugita S, Ikeda Y. Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol. 1990;302(2):330–48.
Article
CAS
PubMed
Google Scholar
Ohtsuka K, Noda H. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. J Neurophysiol. 1995;74(5):1828–40.
Article
CAS
PubMed
Google Scholar
May PJ, Hartwich-Young R, Nelson J, Sparks DL, Porter JD. Cerebellotectal pathways in the macaque: implications for collicular generation of saccades. Neuroscience. 1990;36(2):305–24.
Article
CAS
PubMed
Google Scholar
Fuchs AF, Robinson FR, Straube A. Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. J Neurophysiol. 1993;70(5):1723–40.
Article
CAS
PubMed
Google Scholar
Kleine JF, Guan Y, Buttner U. Saccade-related neurons in the primate fastigial nucleus: what do they encode? J Neurophysiol. 2003;90(5):3137–54.
Article
CAS
PubMed
Google Scholar
Büttner-Ennever JA, Cohen B, Pause M, Fries W. Raphe nucleus of the pons containing omnipause neurons of the oculomotor system in the monkey, and its homologue in man. J Comp Neurol. 1988;267(3):307–21.
Article
PubMed
Google Scholar
Büttner-Ennever JA. Mapping the oculomotor system. Prog Brain Res. 2008;171:3–11.
Article
PubMed
Google Scholar
Stanton GB, Deng SY, Goldberg EM, McMullen NT. Cytoarchitectural characteristic of the frontal eye fields in macaque monkeys. J Comp Neurol. 1989;282(3):415–27.
Article
CAS
PubMed
Google Scholar
Shook BL, Schlag-Rey M, Schlag J. Primate supplementary eye field: I. comparative aspects of mesencephalic and pontine connections. J Comp Neurol. 1990;301(4):618–42.
Article
CAS
PubMed
Google Scholar
Shook BL, Schlag-Rey M, Schlag J. Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei. J Comp Neurol. 1991;307(4):562–83.
Article
CAS
PubMed
Google Scholar
Hikosaka O. GABAergic output of the basal ganglia. Prog Brain Res. 2007;160:209–26.
Article
CAS
PubMed
Google Scholar
Kaneko CRS, Fuchs AF. Connections of cat omnipause neurons. Brain Res. 1982;241(1):166–70.
Article
CAS
PubMed
Google Scholar
Horn AK, Büttner-Ennever JA, Wahle P, Reichenberger I. Neurotransmitter profile of saccadic omnipause neurons in nucleus raphe interpositus. J Neurosci. 1994;14(4):2032–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Evinger C, Kaneko CR, Fuchs AF. Activity of omnipause neurons in alert cats during saccadic eye movements and visual stimuli. J Neurophysiol. 1982;47(5):827–44.
Article
CAS
PubMed
Google Scholar
Keller EL, Gandhi NJ, Vijay SS. Activity in deep intermediate layer collicular neurons during interrupted saccades. Exp Brain Res. 2000;130(2):227–37.
Article
CAS
PubMed
Google Scholar
AKE H, Büttner-Ennever JA, Büttner U. Saccadic premotor neurons in the brainstem: Functional neuroanatomy and clinical implications. Neuro Ophthalmol. 1996;16:229–40.
Google Scholar
Van Gisbergen JAM, Robinson DA, Gielen S. A quantitative analysis of generation of saccadic eye movements by burst neurons. J Neurophysiol. 1981;45(3):417–42.
Article
PubMed
Google Scholar
Leigh RJ, Zee DS. The neurology of eye movements. New York: Oxford; 2015.
Book
Google Scholar
Termsarasab P, Thammongkolchai T, Rucker J, Frucht S. The diagnostic value of saccades in movement disorder patients: a practical guide and review. J Clin Mov Disord. 2015;2:14.
Article
PubMed
PubMed Central
Google Scholar
Buttner N, Geschwind D, Jen JC, Perlman S, Pulst SM, Baloh RW. Oculomotor phenotypes in autosomal dominant ataxias. Arch Neurol. 1998;55(10):1353–7.
Article
CAS
PubMed
Google Scholar
Burk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, et al. Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2, and SCA3. J Neurol. 1999;246:789–97.
Article
CAS
PubMed
Google Scholar
Pulst S-M, Nechiporuk A, Nechiporuk T, Gispert S, Chen X-N, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;14(3):269–76.
Article
CAS
PubMed
Google Scholar
Diallo A, Jacobi H, Cook A, Labrum R, Tezenas du Montcel S. Survival in patients with spinocerebellar ataxia types 1, 2, 3, and 6 (EUROSCA): a longitudinal cohort study. Lancet Neurol. 2018;17(4):327–34.
Article
PubMed
Google Scholar
Wadia N. A clinicogenetic analysis of six Indian spinocerebellar ataxia (SCA2) pedigrees. The significance of slow saccades in diagnosis. Brain. 1998;121(12):2341–55.
Article
PubMed
Google Scholar
Wadia NH, Swami RK. A new form of heredo-familial spinocerebellar degeneration with slow eye movements (nine families). Brain. 1971;94(2):359–74.
Article
CAS
PubMed
Google Scholar
Velázquez-Pérez L, Seifried C, Santos-Falcón N, Abele M, Ziemann U, Almaguer LE, et al. Saccade velocity is controlled by polyglutamine size in spinocerebellar ataxia 2. Ann Neurol. 2004;56(3):444–7.
Article
PubMed
Google Scholar
Velázquez-Pérez L, Seifried C, Abele M, Wirjatijasa F, Rodríguez-Labrada R, Santos-Falcón N, et al. Saccade velocity is reduced in presymptomatic spinocerebellar ataxia type 2. Clin Neurophysiol. 2009;120(3):632–5.
Article
PubMed
Google Scholar
Rodríguez-Labrada R, Velázquez-Pérez L, Auburger G, Ziemann U, Canales-Ochoa N, Medrano-Montero J, et al. Spinocerebellar ataxia type 2: measures of saccade changes improve power for clinical trials. Mov Disord. 2016;31(4):570–8.
Article
PubMed
CAS
Google Scholar
Seifried C, Velázquez-Pérez L, Santos-Falcón N, Abele M, Ziemann U, Almaguer LE, et al. Saccade velocity as a surrogate disease marker in spinocerebellar ataxia type 2. In: Annals of the New York Academy of Sciences. Hoboken: Wiley-Blackwell; 2005. p. 524–527.
Klostermann W, Zühlke C, Heide W, Kömpf D, Wessel K. Slow saccades and other eye movement disorders in spinocerebellar atrophy type 1. J Neurol. 1997;244(2):105–11.
Article
CAS
PubMed
Google Scholar
Politi LS, Bianchi Marzoli S, Godi C, Panzeri M, Ciasca P, Brugnara G, et al. MRI evidence of cerebellar and extraocular muscle atrophy differently contributing to eye movement abnormalities in SCA2 and SCA28 diseases. Investig Ophthalmol Vis Sci. 2016;57(6):2714–20.
Article
CAS
Google Scholar
Rufa A, Federighi P. Fast versus slow: different saccadic behavior in cerebellar ataxias. Ann N Y Acad Sci. 2011;1233(1):148–54.
Article
PubMed
Google Scholar
Geiner S, AKE H, Wadia NH, Sakai H, Büttner-Ennever JA. The neuroanatomical basis of slow saccades in spinocerebellar ataxia type 2 (Wadia-subtype). Prog Brain Res. 2008;171:575–81.
Article
CAS
PubMed
Google Scholar
Haberhausen G, Damian MS, Leweke F, Müller U. Spinocerebellar ataxia, type 3 (SCA3) is genetically identical to Machado-Joseph disease (MJD). J Neurol Sci. 1995;132(1):71–5.
Article
CAS
PubMed
Google Scholar
Matilla T, McCall A, Subramony SH, Zoghbi HY. Molecular and clinical correlations in spinocerebellar ataxia type 3 and Machado-Joseph disease. Ann Neurol. 1995;38:68–72.
Article
CAS
PubMed
Google Scholar
Ranum LP, Lundgren JK, Schut LJ, Ahrens MJ, Perlman S, Aita J, et al. Spinocerebellar ataxia type 1 and Machado-Joseph disease: incidence of CAG expansions among adult-onset ataxia patients from 311 families with dominant, recessive, or sporadic ataxia. Am J Hum Genet. 1995;57(3):603–8.
CAS
PubMed
PubMed Central
Google Scholar
Twist EC, Casaubon LK, Ruttledge MH, Rao VS, Macleod PM, Radvany J, et al. Machado Joseph disease maps to the same region of chromosome 14 as the spinocerebellar ataxia type 3 locus. J Med Genet. 1995;32(1):25–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maruyama H, Kawakami H, Kohriyama T, Sakai T, Doyu M, Sobue G, et al. CAG repeat length and disease duration in Machado-Joseph disease: a new clinical classification. J Neurol Sci. 1997;152(2):166–71.
Article
CAS
PubMed
Google Scholar
Riess O, Rüb U, Pastore A, Bauer P, Schöls L. SCA3: neurological features, pathogenesis and animal models. Cerebellum. 2008;7:125–37.
Article
CAS
PubMed
Google Scholar
Watanabe M, Abe K, Aoki M, Kameya T, Kaneko J, Shoji M, et al. Analysis of CAG trinucleotide expansion associated with Machado-Joseph disease. J Neurol Sci. 1996;136(1–2):101–7.
Article
CAS
PubMed
Google Scholar
Dawson DM, Feudo P, Zubick HH, Rosenberg R, Fowler H. Electro-oculographic findings in Machado-Joseph disease 550. Neurology. 1982;32(0028–3878):1272–6.
Article
CAS
PubMed
Google Scholar
Hotson JR, Langston EB, Louis AA, Rosenberg RN. The search for a physiologic marker of Machado-Joseph disease 534. Neurology. 1987;37(0028–3878):112–6.
Article
CAS
PubMed
Google Scholar
Rivaud-Pechoux S, Dürr A, Gaymard B, Cancel G, Ploner CJ, Agid Y, et al. Eye movement abnormalities correlate with genotype in autosomal dominant cerebellar ataxia type I. Ann Neurol. 1998;43(3):297–302.
Article
CAS
PubMed
Google Scholar
Gordon CR, Joffe V, Vainstein G, Gadoth N. Vestibulo-ocular arreflexia in families with spinocerebellar ataxia type 3 (Machado-Joseph disease). J Neurol Neurosurg Psychiatry. 2003;74(10):1403–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gordon CR, Zivotofsky AZ, Caspi A. Impaired vestibulo-ocular reflex (VOR) in spinocerebellar ataxia type 3 (SCA3): Bedside and search coil evaluation. In: Journal of Vestibular Research: Equilibrium and Orientation. 2014. p. 351–5.
Ghasia FF, Wilmot G, Ahmed A, Shaikh AG. Strabismus and micro-Opsoclonus in Machado-Joseph disease. Cerebellum. 2016;15(4):491–7.
Article
PubMed
Google Scholar
Murofushi T, Mizuno M, Hayashida T, Yamane M, Osanai R, Ito K, et al. Neuro-otological and neuropathological findings in two cases with Machado-joseph disease. Acta Otolaryngol. 1995;115(S520):136–9.
Article
Google Scholar
Caspi A, Zivotofsky AZ, Gordon CR. Multiple saccadic abnormalities in spinocerebellar ataxia type 3 can be linked to a single deficiency in velocity feedback. Investig Ophthalmol Vis Sci. 2013;54(1):731–8.
Article
Google Scholar
Murata Y, Yamaguchi S, Kawakami H, Imon Y, Maruyama H, Sakai T, et al. Characteristic magnetic resonance imaging findings in Machado-Joseph disease. Arch Neurol. 1998;55(1):33–7.
Article
CAS
PubMed
Google Scholar
Tokumaru AM, Kamakura K, Maki T, Murayama S, Sakata I, Kaji T, et al. Magnetic resonance imaging findings of Machado-Joseph disease: histopathologic correlation. J Comput Assist Tomogr. 2003;27(2):241–8.
Article
PubMed
Google Scholar
Rüb U, Bürk K, Schöls L, Brunt ER, De Vos RAI, Orozco Diaz G, et al. Damage to the reticulotegmental nucleus of the pons in spinocerebellar ataxia type 1, 2, and 3. Neurology. 2004;63(7):1258–63.
Article
PubMed
Google Scholar
Rüb U, Brunt ER, Gierga K, Schultz C, Paulson H, De Vos RAI, et al. The nucleus raphe interpositus in spinocerebellar ataxia type 3 (Machado-Joseph disease). J Chem Neuroanat. 2003;25(2):115–27.
Article
PubMed
CAS
Google Scholar
Rüb U, Brunt ER, Deller T. New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado-Joseph disease). Curr Opin Neurol. 2008;21:111–6.
Article
PubMed
Google Scholar
Sechi G, Serra A. Wernicke’s encephalopathy: new clinical settings and recent advances in diagnosis and management. Lancet Neurol. 2007;6(5):442–55.
Article
CAS
PubMed
Google Scholar
Shin BS, Oh SY, Kim JS, Lee H, Kim EJ, Hwang SB. Upbeat nystagmus changes to downbeat nystagmus with upward gaze in a patient with Wernicke’s encephalopathy. J Neurol Sci. 2010;298(1–2):145–7.
Article
PubMed
Google Scholar
Kim K, Shin DH, Lee YB, Park KH, Park HM, Shin DJ, et al. Evolution of abnormal eye movements in Wernicke’s encephalopathy: correlation with serial MRI findings. J Neurol Sci. 2012;323(1–2):77–9.
Article
PubMed
Google Scholar
Cogan DG, Victor M. Ocular signs of wernicke’s disease. AMA Arch Ophthalmol. 1954;51(2):204–11.
Article
CAS
PubMed
Google Scholar
Cox TA, Corbett JJ, Thompson HS, Lennarson L. Upbeat nystagmus changing to downbeat nystagmus with convergence. Neurology. 1981;31(7):891–2.
Article
CAS
PubMed
Google Scholar
DELAPAZ MA, CHUNG SM, JA MCCRARY. BILATERAL INTERNUCLEAR OPHTHALMOPLEGIA IN A PATIENT WITH WERNICKES ENCEPHALOPATHY. JOURNAL OF CLINICAL. Neuro-Ophthalmology. 1992;12(2):116–20.
CAS
Google Scholar
Hamann KU. Slowed saccades in various neurological disorders. Ophthalmologica. 1979;178(6):357–64.
Article
CAS
PubMed
Google Scholar
Kenyon RV, Becker JT, Butters N, Hermann H. Oculomotor function in wernicke-korsakoff’s syndrome: I. saccadic eye movements. Int J Neurosci. 1984;25(1–2):53–65.
Article
CAS
PubMed
Google Scholar
Kenyon RV, Becker JT, Butters N. Oculomotor function in wernicke-korsakoff’s syndrome: II. Smooth pursuit eye movements. Int J Neurosci. 1984;25(1–2):67–79.
Article
CAS
PubMed
Google Scholar
Van Der Stigchel S, Reichenbach RCL, Wester AJ, Nijboer TCW. Antisaccade performance in Korsakoff patients reveals deficits in oculomotor inhibition. J Clin Exp Neuropsychol. 2012;34(8):876–86.
Article
PubMed
Google Scholar
Halliday GM, Ellis J, Heard R, Caine D, Harper C. Brainstem serotonergic neurons in chronic alcoholics with and without the memory impairment of korsakoff’s psychosis. J Neuropathol Exp Neurol. 1993;52(6):567–79.
Article
CAS
PubMed
Google Scholar
Kalidass B, Sunnathkal R, Rangashamanna V, Paraswani R. Atypical Wernicke’s encephalopathy showing involvement of substantia Nigra. J Neuroimaging. 2012;22(2):204–7.
Article
PubMed
Google Scholar
Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol. 2002;213:1–47.
Article
CAS
PubMed
Google Scholar
Solimena M, Folli F, Denis-Donini S, Comi GC, Pozza G, De Camilli P, et al. Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus. N Engl J Med. 1988;318(16):1012–20.
Article
CAS
PubMed
Google Scholar
Solimena M, Folli F, Aparisi R, Pozza G, De Camilli P. Autoantibodies to GABA-ergic neurons and pancreatic Beta cells in stiff-man syndrome. N Engl J Med. 1990;322(22):1555–60.
Article
CAS
PubMed
Google Scholar
Abele M, Weller M, Mescheriakov S, Burk K, Dichgans J, Klockgether T. Cerebellar ataxia with glutamic acid decarboxylase autoantibodies. Neurology. 1999;52(4):857–9.
Article
CAS
PubMed
Google Scholar
Vianello M, Tavolato B, Giometto B. Glutamic acid decarboxylase autoantibodies and neurological disorders. Neurol Sci. 2002;23(4):145–51.
Article
CAS
PubMed
Google Scholar
Levy LM, Dalakas MC, Floeter MK. The stiff-person syndrome: an autoimmune disorder affecting neurotransmission of γ-aminobutyric acid. In: Annals of Internal Medicine. 1999. p. 522–30.
Dalakas MC, Fujii M, Li M, McElroy B. The clinical spectrum of anti-GAD antibody-positive patients with stiff-person syndrome. Neurology. 2000;55(10):1531–5.
Article
CAS
PubMed
Google Scholar
Murinson BB. Stiff-person syndrome. Neurol. 2004;10:131–7.
Article
Google Scholar
Oskarsson B, Pelak V, Quan D, Hall D, Foster C, Galetta S. STIFF EYES IN STIFF-PERSON SYNDROME. Neurol. 2008;71(5):378 LP–380.
Article
Google Scholar
Antonini G, Nemni R, Giubilei F, Gragnani F, Ceschin V, Morino S, et al. Autoantibodies to glutamic acid decarboxylase in downbeat nystagmus. J Neurol Neurosurg Psychiatry. 2003;74(7):998–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Economides JR, Horton JC. Eye movement abnormalities in stiff person syndrome. Neurology. 2005;65(9):1462–4.
Article
PubMed
Google Scholar
Zivotofsky AZ, Siman-Tov T, Gadoth N, Gordon CR. A rare saccade velocity profile in stiff-person syndrome with cerebellar degeneration. Brain Res. 2006;1093(1):135–40.
Article
CAS
PubMed
Google Scholar
Shaikh AG, Wilmot G. Opsoclonus in a patient with increased titers of anti-GAD antibody provides proof for the conductance-based model of saccadic oscillations. J Neurol Sci. 2016;362:169–73.
Article
PubMed
Google Scholar
Tilikete C, Veghetto A, Trouillas P, Honnorat J. Anti-GAD antibodies and periodic alternating nystagmus. Arch Neurol. 2005;62(8):1300–3.
Article
PubMed
Google Scholar
Markakis I, Alexiou E, Xifaras M, Gekas G, Rombos A. Opsoclonus-myoclonus-ataxia syndrome with autoantibodies to glutamic acid decarboxylase. Clin Neurol Neurosurg. 2008;110(6):619–21.
Article
PubMed
Google Scholar
Goffart L, Pélisson D, Guillaume A. Orienting gaze shifts during Muscimol inactivation of caudal fastigial nucleus in the cat. II. Dynamics and eye-head coupling. J Neurophysiol. 1998;79(4):1959–76.
Article
CAS
PubMed
Google Scholar
Shaikh AG, Miura K, Optican LM, Ramat S, Leigh RJ, Zee DS. A new familial disease of saccadic oscillations and limb tremor provides clues to mechanisms of common tremor disorders. Brain. 2007;130(11):3020–31.
Article
PubMed
Google Scholar
Shaikh AG, Wong AL, Optican LM, Miura K, Solomon D, Zee DS. Sustained eye closure slows saccades. Vis Res. 2010;50(17):1665–75.
Article
PubMed
Google Scholar
Enderle JD, Engelken EJ. Simulation of oculomotor post-inhibitory rebound burst firing using a Hodgkin-Huxley model of a neuron. In: Biomedical Sciences Instrumentation. 1995. p. 53–8.
Miura K, Optican LM. Membrane channel properties of premotor excitatory burst neurons may underlie saccade slowing after lesions of omnipause neurons. J Comput Neurosci. 2006;20(1):25–41.
Article
PubMed
Google Scholar
Federighi P, Cevenni G, Dotti MT, Rosini F, Pretegiani E, Federico A, et al. Differences in saccade dynamics between spinocerebellar ataxia 2 and late-onset cerebellar ataxias. Brain. 2011;134(3):879–91.
Article
PubMed
Google Scholar
Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol. 1954;47(6):381–91.
Article
CAS
PubMed
Google Scholar
Enderle JD, Wolfe JW. Time-optimal control of saccadic eye movements. Biomed Eng IEEE Trans. 1987;BME-34(1):43–55.
Article
Google Scholar
Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. Science. 1995;269(5232):1880–2.
Article
CAS
PubMed
Google Scholar
Meyer DE, Abrams RA, Kornblum S, Wright CE, Smith JEK. Optimality in human motor performance: ideal control of rapid aimed movements. Psychol Rev. 1988;95(3):340–70.
Article
CAS
PubMed
Google Scholar
Terao Y, Fukuda H, Yugeta A, Hikosaka O, Nomura Y, Segawa M, et al. Initiation and inhibitory control of saccades with the progression of Parkinson’s disease - changes in three major drives converging on the superior colliculus. Neuropsychologia. 2011;49(7):1794–806.
Article
PubMed
Google Scholar
Choi SM, Lee SH, Choi KH, Nam TS, Kim JT, Park MS, et al. Directional asymmetries of saccadic hypometria in patients with early Parkinson’s disease and unilateral symptoms. Eur Neurol. 2011;66(3):170–4.
Article
CAS
PubMed
Google Scholar
Kimmig H, Haußmann K, Mergner T, Lücking CH. What is pathological with gaze shift fragmentation in Parkinson’s disease? J Neurol. 2002;249(6):683–92.
Article
PubMed
Google Scholar
Blekher T, Weaver M, Rupp J, Nichols WC, Hui SL, Gray J, et al. Multiple step pattern as a biomarker in Parkinson disease. Parkinsonism Relat Disord. 2009;15(7):506–10.
Article
PubMed
PubMed Central
Google Scholar
Rottach KG, Riley DE, DiScenna AO, Zivotofsky AZ, Leigh RJ. Dynamic properties of horizontal and vertical eye movements in parkinsonian syndromes. Ann Neurol. 1996;39(3):368–77.
Article
CAS
PubMed
Google Scholar
Shaikh AG, Factor SA, Juncos JL. Saccades in progressive Supranuclear palsy-maladapted, irregular, curved, and slow. Mov Disord Clin Pract. 2017;4(5):671–81.
Article
PubMed
PubMed Central
Google Scholar
Steele J, Richardson JC, Olszewski J. Progressive Supranuclear palsy. Ann Neurol. 1964;10.
Williams DR, Lees AJ, Wherrett JR, Clifford SJCJ. Richardson and 50 years of progressive supranuclear palsy. Neurol. 2008;70:566–73.
Article
Google Scholar
Chen AL, Riley DE, King SA, Joshi AC, Serra A, Liao K, et al. The disturbance of gaze in progressive supranuclear palsy: Implications for pathogenesis. Front Neurol. 2010;1:147.
PubMed
PubMed Central
Google Scholar
Bhidayasiri R, Riley DE, Somers JT, Lerner AJ, Büttner-Ennever JA, Leigh RJ. Pathophysiology of slow vertical saccades in progressive supranuclear palsy. Neurology. 2001;57(11):2070–7.
Article
CAS
PubMed
Google Scholar
Salsano E, Umeh C, Rufa A, Pareyson D, Zee DS. Vertical supranuclear gaze palsy in Niemann-pick type C disease. Neurol Sci. 2012;33(6):1225–32.
Article
PubMed
Google Scholar
Kapoula Z, Yang Q, Vernet M, Dieudonné B, Greffard S, Verny M. Spread deficits in initiation, Speed and Accuracy of Horizontal and Vertical Automatic Saccades in Dementia with Lewy Bodies. Front Neurol. 2010;1:138.
Article
PubMed
PubMed Central
Google Scholar
Mahapatra R, Edwards M, Schott J, Bhatia K. Review: Corticobasal degeneration. Lancet Neurol. 2004;3:736–43.
Article
PubMed
Google Scholar
Leigh RJ, Newman SA, Folstein SE, Lasker AG, Jensen BA. Abnormal ocular motor control in Huntington’s disease. Neurology. 1983;33(10):1268–75.
Article
CAS
PubMed
Google Scholar
Collewijn H, Went LN, Tamminga EP, Vegter-Van der Vlis M. Oculomotor defects in patients with Huntington’s disease and their offspring. J Neurol Sci. 1988;86(2–3):307–20.
Article
CAS
PubMed
Google Scholar
Lasker AG, Zee DS, Hain TC, Folstein SE, Singer HS. Saccades in Huntington’s disease: slowing and dysmetria. Neurology. 1988;38(3):427–31.
Article
CAS
PubMed
Google Scholar