Pulst MS, Nechiporuk A, Nechiporuk T, Gispert S, Chen SN, Lopes-Cendes I, et al. Moderate expansion of anormally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;4:269–76.
Google Scholar
Auburger G, Sen NE, Meierhofer D, Başak AN, Gitler AD. Efficient prevention of neurodegenerative diseases by depletion of starvation response factor Ataxin-2. Trends Neurosci. 2017;S0166–2236(17):30116–9.
Google Scholar
Velázquez-Pérez LC, Rodríguez-Labrada R, Fernandez-Ruiz J. Spinocerebellar Ataxia type 2: Clinicogenetic aspects, mechanistic insights, and Management Approaches. Front Neurol. 2017;11(8):472.
Google Scholar
Velázquez-Pérez L, Rodríguez-Labrada R, Laffita-Mesa JM. Prodromal spinocerebellar ataxia type 2: Prospects for early interventions and ethical challenges. Mov Disord. 2017;32(5):708–18.
PubMed
Google Scholar
Velazquez-Perez L, Cruz GS, Santos Falcon N, Enrique Almaguer Mederos L, Escalona Batallan K, Rodríguez Labrada R, et al. Molecular epidemiology of spinocerebellar ataxias in Cuba: insights into SCA2 founder effect in Holguin. Neurosci Lett. 2009;454(2):157–60.
CAS
PubMed
Google Scholar
Auburger G, Diaz GO, Capote RF, Sanchez SG, Perez MP, del Cueto ME, et al. Autosomal dominant ataxia: genetic evidence for locus heterogeneity from a Cuban founder-effect population. Am J Hum Genet. 1990;46(6):1163–77.
CAS
PubMed
PubMed Central
Google Scholar
Scoles DR, Meera P, Schneider MD, Paul S, Dansithong W, Figueroa KP, et al. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature. 2017;544:362–6.
CAS
PubMed
Google Scholar
Cromarty RA, Elder GJ, Graziadio S, Baker M, Bonanni L, Onofrj M, et al. Neurophysiological biomarkers for Lewy body dementias. Clin Neurophysiol. 2016;127(1):349–59.
PubMed
PubMed Central
Google Scholar
Yamasaki T, Horie S, Muranaka H, Kaseda Y, Mimori Y, Tobimatsu S. Relevance of in vivo neurophysiological biomarkers for mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis. 2012;31(Suppl 3):S137–54.
PubMed
Google Scholar
Ilg W, Branscheidt M, Butala A, Celnik P, de Paola L, Horak FB, et al. Consensus paper: neurophysiological assessments of ataxias in daily practice. Cerebellum. 2018;17(5):628–53.
CAS
PubMed
Google Scholar
Jackson CE, Snyder PJ. Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild Alzheimer’s disease. Alzheimers Dement. 2008;4:S137–43.
PubMed
Google Scholar
Lai CL, Lin RT, Liou LM, Liu CK. The role of event-related potentials in cognitive decline in Alzheimer’s disease. Clin Neurophysiol. 2010;121(2):194–9.
PubMed
Google Scholar
Solís-Vivanco R, Rodríguez-Violante M, Rodríguez-Agudelo Y, Schilmann A, Rodríguez-Ortiz U, Ricardo-Garcell J. The P3a wave: a reliable neurophysiological measure of Parkinson’s disease duration and severity. Clin Neurophysiol. 2015;126:2142–9.
PubMed
Google Scholar
Hart EP, Dumas EM, Reijntjes RHAM, van der Hiele K, van den Bogaard SJA, Middelkoop HAM, et al. Deficient sustained attention to response task and P300 characteristics in early Huntington’s disease. J Neurol. 2012;259:1191–8.
CAS
PubMed
Google Scholar
Linden DE. The p300: where in the brain is it produced and what does it tell us? Neuroscientist. 2005;11(6):563–76.
CAS
PubMed
Google Scholar
Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118:2128–48.
PubMed
PubMed Central
Google Scholar
Lindsay E, Storey E. Cognitive changes in the spinocerebellar ataxias due to expanded Polyglutamine tracts: a survey of the literature. Brain Sci. 2017;7(7).
Kremlacek J, Valis M, Masopust J, Urban A, Zumrova A, Talab R, et al. An Electrophysio logical study of visual processing in spinocerebellar Ataxia type 2 (SCA2). Cerebellum. 2011;10:32–42.
PubMed
Google Scholar
Denny-Brown D, Dawson DM, Tyler HR. Handbook of neurological examination and case recording. 3rd ed. Cambridge, mass: Harvard University Press; 1982.
Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20.
PubMed
Google Scholar
Spreen O, Strauss EA. Compendium of neuropsychological tests: administration norms, and commentary. New York, NY: Oxford University Press; 1991.
Google Scholar
Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996;14(3):285–91.
CAS
PubMed
Google Scholar
Polich J. Clinical application of the P300 event-related brain potential. Phys Med Rehabil Clin N Am. 2004;15(1):133–61.
PubMed
Google Scholar
Donchin E, MGH C. Is the P300 component a manifestation of cognitive updating? Behav Brain Sci. 1988;11(3):357–427.
Google Scholar
Vaca-Palomares I, Díaz R, Rodríguez-Labrada R, Medrano-Montero J, Aguilera-Rodríguez R, Vázquez-Mojena Y, et al. Strategy use, planning, and rule acquisition deficits in spinocerebellar Ataxia type 2 patients. J Int Psychol Soc. 2015;21(3):214–20.
Google Scholar
Fancellu R, Paridi D, Tomasello C, Panzeri M, Castaldo A, Genitrini S, et al. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol. 2013;260(12):3134–43.
PubMed
Google Scholar
Velázquez-Pérez L, Rodríguez-Labrada R, Cruz-Rivas EM, Fernández-Ruiz J, Vaca-Palomares I, Lilia-Campins J, et al. Comprehensive study of early features in spinocerebellar ataxia 2: delineating the prodromal stage of the disease. Cerebellum. 2014;3(5):568–79.
Google Scholar
van Dinteren R, Arns M, Jongsma MLA, Kessels RPC. P300 development across the lifespan: a systematic review and meta-analysis. PLoS One. 2014;9(2):e87347.
PubMed
PubMed Central
Google Scholar
Johnson R Jr. On the neural generators of the P300 component of the event-related potential. Psychophysiology. 1993;30(1):90–7.
PubMed
Google Scholar
Mulert C, Pogarell O, Juckel G, Rujescu D, Giegling I, Rupp D, et al. The neural basis of the P300 potential. Focus on the time-course of the underlying cortical generators. Eur Arch Psychiatry Clin Neurosci. 2004;254(3):190–8.
CAS
PubMed
Google Scholar
Kim H. Involvement of the dorsal and ventral attention networks in oddball stimulus processing: a meta-analysis. Hum Brain Mapp. 2014;35(5):2265–84.
PubMed
Google Scholar
Rusiniak M, Lewandowska M, Wolak T, Pluta A, Milner R, Ganc M, et al. A modified oddball paradigm for investigation of neural correlates of attention: a simultaneous ERP-fMRI study. MAGMA. 2013;26(6):511–26.
PubMed
PubMed Central
Google Scholar
Mannarelli D, Pauletti C, De Lucia MC, Delle Chiaie R, Bersani FS, Spagnoli F, et al. Effects of cerebellar transcranial direct current stimulation on attentional processing of the stimulus: evidence from an event-related potentials study. Neuropsychologia. 2016;84:127–35.
PubMed
Google Scholar
Mochizuki Y, Oishi M, Hara M, Takasu T. P300 and cerebral blood flow before and after TRH in olivopontocerebellar atrophy. Int J Neurosci. 1997;92(1–2):119–26.
CAS
PubMed
Google Scholar
Kamitani T, Kuroiwa Y, Li M, Ikegami T, Matsubara S. Relationship between cerebellar size and variation of reaction time during a visual cognitive task in normal subjects. J Neurol. 2003;250(8):1001–3.
PubMed
Google Scholar
Mannarelli D, Pauletti C, De Lucia MC, Currà A, Fattapposta F. Insights from ERPs into attention during recovery after cerebellar stroke: a case report. Neurocase. 2015;21(6):721–6.
PubMed
Google Scholar
Schmahmann JD. The cerebellum and cognition. Neurosci Lett. pii: S0304–3940(18)30467–30461.
Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.
CAS
PubMed
Google Scholar
Koziol LF, Budding D, Andreasen N, D'Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum's role in movement and cognition. Cerebellum. 2014;13(1):151–77.
PubMed
PubMed Central
Google Scholar
Hart EP, Dumas EM, van Zwet EW, van der Hiele K, Jurgens CK, Middelkoop HA, et al. Longitudinal pilot-study of sustained attention to response task and P300 in manifest and pre-manifest Huntington's disease. J Neuropsychol. 2015;9(1):10–20.
PubMed
Google Scholar
Murphy C, Solomon ES, Haase L, Wang M, Morgan CD. Olfaction in aging and Alzheimer’s disease: event-related potentials to a cross-modal odor-recognition memory task discriminate apoe epsilon4 + and apoe epsilon 4- individuals. Ann N Y Acad Sci. 2009;1170:647–57.
PubMed
PubMed Central
Google Scholar
Gilbert PE, Murphy C. The effect of the apoe epsilon4 allele on recognition memory for olfactory and visual stimuli in patients with pathologically confirmed Alzheimer’s disease, probable Alzheimer’s disease, and healthy elderly controls. J Clin Exp Neuropsychol. 2004;26:779–94.
PubMed
Google Scholar
Golob EJ, Ringman JM, Irimajiri R, Bright S, Schaffer B, Medina LD, et al. Cortical event-related poten-tials in preclinical familial Alzheimer disease. Neurology. 2009;73:1649–55.
CAS
PubMed
PubMed Central
Google Scholar
Parra MA, Lorena Ascencio L, Fenando Urquina H, Manes F, Ibáñez AM. P300 and neuropsychological assessment in mild cognitive impairment and Alzheimer dementia. Front Neurol. 2012;3. https://doi.org/10.3389/fneur.2012.00172.
Bennys K, Portet F, Touchon J, Rondouin G. Diagnostic value of event-related evoked potentials N200 and P300 subcomponents in early diagnosis of Alzheimer’s disease and mild cognitive impairment. J Clin Neurophysiol. 2007;24:405–12.
PubMed
Google Scholar