Ito M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 1993;16(11):448–50. https://doi.org/10.1016/0166-2236(93)90073-U.
Article
CAS
PubMed
Google Scholar
Ito M. Cerebellar microcomplexes. In: Schmahmann JD, editor. The cerebellum and cognition. New York: Academic Press; 1997. p. 475–87.
Google Scholar
Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. April, 2008;9(4):304–13. https://doi.org/10.1038/nrn2332.
Article
CAS
PubMed
Google Scholar
Ito M. The cerebellum: brain for an implicit self. Upper Saddle River: FT Press; 2011.
Google Scholar
Leiner H, Leiner A, Dow R. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443–54. https://doi.org/10.1037/0735-7044.100.4.443.
Article
CAS
PubMed
Google Scholar
Leiner H, Leiner A, Dow R. Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behav Neurosci. 1989;103(5):998–1008. https://doi.org/10.1037/0735-7044.103.5.998.
Article
CAS
PubMed
Google Scholar
Leggio M, Molinari M. Cerebellar sequencing: a trick for predicting the future. Cerebellum. 2015;14(1):35–8. https://doi.org/10.1007/s12311-014-0616-x.
Article
CAS
PubMed
Google Scholar
Van Overwalle F, Mariën P. Functional connectivity between the cerebrum and cerebellum in social cognition: A multi-study analysis. NeuroImage. 2016;124A:248–55.
Article
Google Scholar
Van Overwalle F, Manto M, Leggio M, Delgado-García J. The sequencing process generated by the cerebellum crucially contributes to social interactions. Med Hypotheses. 2019;128. https://doi.org/10.1016/j.mehy.2019.05.014.
Vandervert L. The Origin of Mathematics and Number Sense in the Cerebellum: with Implications for Finger Counting and Dyscalculia. Cerebellum Ataxias. 2017;4(12). https://doi.org/10.1186/s40673-017-0070-x eCollection 2017.
Vandervert L. How prediction based on sequence detection in the cerebellum led to the origins of stone tools, language, and culture and, thereby, to the rise of Homo sapiens. Front Cell Neurosci. 2018. 2018;12:408. https://doi.org/10.3389/fncel.2018.00408.
Article
PubMed
PubMed Central
Google Scholar
Vandervert, L.R. (2020a). A Brain for Numbers: The Biology of the Number Instinct by Andreas Nieder. Math Intelligencer. https://doi.org/https://doi.org/10.1007/s00283-020-10017-x
Vandervert, L. (2019). The evolution of theory of mind (ToM) within the evolution of cerebellar sequence detection in stone-tool making and language: implications for studies of higher-level cognitive functions in degenerative cerebellar atrophy. Cerebellum Ataxias 6, (1), 1–7. doi.org/https://doi.org/10.1186/s40673-019-0101-x
Vandervert, L. (2020b). The cerebellum-driven social learning of inner speech in the evolution of stone-tool making and language: Innate hand-tool connections in the cerebro-cerebellar system. Van Overwalle, F., Manto, M., Cattaneo, Z. et al. Consensus Paper: Cerebellum and Social Cognition. Cerebellum. https://doi.org/https://doi.org/10.1007/s12311-020-01155-1
Vandervert L. The prominent role of the cerebellum in the social learning of the phonological loop in working memory: How language was adaptively built from cerebellar inner speech required during stone-tool making. AIMS Neurosci. 2020c;7(3):333–43. https://doi.org/10.3934/Neuroscience.2020020.
Article
PubMed
PubMed Central
Google Scholar
Van Overwalle F, Ma Q, Heleven E. The Posterior Crus II Cerebellum is specialized for Social Mentalizing and Emotional self-Experiences: A Meta-analysis. Soc Cogn Affect Neurosci. 2020. https://doi.org/10.1093/scan/nsaa124.
Baddeley A, Gathercole S, Papagno C. The phonological loop as a language learning device. Psych.Rev. 1998;105(1):158–73. https://doi.org/10.1037/0033-295X.105.1.158.
Article
CAS
Google Scholar
Overmann KA. The material origin of numbers: insights from the archaeology of the ancient near east. Piscataway, NJ: Gorgias Press; 2019. ISBN 978-1-4632-0743-4
Book
Google Scholar
Iuculano, T., Rosenberg-Lee, M., Richardson, J., Tenison, C., Fuchs, L., Supekar, K., Menon V. (2015). Cognitive tutoring induces widespread neuroplasticity and remediates brain function in children with mathematical learning disabilities. Nat Commun, 6, 8453. https://doi.org/https://doi.org/10.1038/ncomms9453, 1.
Stout D, Hecht E. The evolutionary neuroscience of cumulative culture. PNAS. 2017;114(30):7861–8.
Article
CAS
Google Scholar
Roux V, Bril B, Dietrich G. Skills and learning difficulties involved in stone knapping. World Archaeol. 1995;27:63–87.
Article
Google Scholar
Faisal A, Stout D, Apel J, Bradley B. The manipulative complexity of Lower Paleolithic stone toolmaking. PLoS One. 2010;5:e13718.
Article
Google Scholar
Magnani M, Rezek Z, Lin SC, Chan A, Dibble HL. Flake variation in relation to the application of force. J Archaeol Sci. 2014;46:37–49.
Article
Google Scholar
Nonaka T, Bril B, Rein R. How do stone knappers predict and control the outcome of flaking? Implications for understanding early stone tool technology. J Hum Evol. 2010;59:155–67.
Article
Google Scholar
Putt SS, Woods AD, Franciscus RG. The role of verbal interaction during experimental bifacial stone tool manufacture. Lithic Technol. 2014;39:96–112.
Article
Google Scholar
Stout D, Apel J, Commander J, Roberts M. Late Acheulean technology and cognition at Boxgrove, UK. J Archaeol Sci. 2014;41:576–90.
Article
Google Scholar
Morgan TJ, et al. Experimental evidence for the co-evolution of hominin toolmaking teaching and language. Nat Commun. 2015;6:6029.
Article
CAS
Google Scholar
Cook R, Bird G, Catmur C, Press C, Heyes C. Mirror neurons: from origin to function. Behav Brain Sci. 2014;37:177–92.
Article
Google Scholar
Stout D. Neuroscience of technology. In: Richerson PJ, Christiansen M, editors. Cultural Evolution: Society, Technology, Language, and Religion, Strungmann Forum Reports: MIT Press, Cambridge, MA; 2013. p. 157–73.
Brozzoli C, Roy AC, Lidborg LH, Lövdén M. Language as a tool: motor proficiency using a tool predicts individual linguistic abilities. Front Psychol. 2019;10:1639. https://doi.org/10.3389/fpsyg.2019.01639.
Article
PubMed
PubMed Central
Google Scholar
Vandervert L. How music training enhances working memory: a cerebrocerebellar blending mechanism that can lead equally to scientific discovery and therapeutic efficacy in neurological disorders. Cerebellum Ataxias. 2015;2(11). https://doi.org/10.1186/s40673-015-0030-2.
Flanagan R, Nakano E, Imamizu H, Osu R, Yoshioka T, Kawato M. Composition and decomposition of internal models in learning under altered kinematic and dynamic environments. J Neurosci. 1999;19:1–5.
Article
Google Scholar
Imamizu H, Higuchi S, Toda A, Kawato M. Reorganization of brain activity for multiple internal models after short but intensive training. Cortex. 2007;43(3):338–49. https://doi.org/10.1016/S0010-9452(08)70459-3.
Article
PubMed
Google Scholar
Imamizu H, Kawato M. Cerebellar internal models: implications for dexterous use of tools. Cerebellum. 2012;11(2):325–35. https://doi.org/10.1007/s12311-010-0241-2.
Article
CAS
PubMed
Google Scholar
Nakano E, Flanagan J, Imamizu H, Rieko O, Yoshioka T, Kawato M. Composition and decomposition learning of reaching movements under altered environments: an examination of the multiplicity of internal models. Syst Comput Jpn. 2002;33(11):80–94. https://doi.org/10.1002/scj.1166.
Article
Google Scholar
Vandervert LR, Vandervert-Moe KJ. Neuroscience: The Cerebellum’s Predominant Role in Creativity. In: Runco M, Pritzker S, editors. Encyclopedia of Creativity, vol. 2. 3rd ed. Academic Press: Elsevier; 2020. p. 211–5.
Chapter
Google Scholar
Vandervert L. The prominent role of the cerebellum in the origin, advancement and individual learning of culture. Cerebellum Ataxias. 2016;3(10). https://doi.org/10.1186/s40673-016-0049-z.
Crespi, B; Read, S; Hurd, P. (2017a) Segregating polymorphisms of FOXP2 are associated with measures of inner speech, speech fluency and strength of handedness in a healthy population. Brain Lang. 173: 33-40. doi.org/https://doi.org/10.1016/j.bandl.2017.06.002.
Crespi, B; Read, S; Hurd, P. (2017b) Segregating polymorphisms of FOXP2 are associated with measures of inner speech, speech fluency and strength of handedness in a healthy population. Brain Lang. 173: 33-40. doi.org/https://doi.org/10.1016/j.bandl.2017.06.002.
Alderson-Day B, Fernyhough C. Inner speech: development, cognitive functions, phenomenology, and neurobiology. Psychol Bull. 2015;141(5):931–65. https://doi.org/10.1037/bul0000021.
Article
PubMed
PubMed Central
Google Scholar
Perrone-Bertolotti M, Rapin L, Lachaux JP, Baciu M, Loevenbruck H. What is that little voice inside my head? Inner speech phenomenology, its role in cognitive performance, and its relation to self-monitoring. Behavioral Brain Research. 2014;261:220–39.
Article
CAS
Google Scholar
Rijntjes M, Weiller C, Bormann T, Musso M. The dual loop model: Its relation to language and other modalities. Frontiers in Evolutionary Neuroscience. 2012;4(9).
Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Schatschneider, C., Hamlett, C. L., DeSelms, J., Seethaler, P. M., Wilson, J., Craddock, C. F., Bryant, J. D., Luther, K., & Changas, P. (2013). Effects of first-grade number knowledge tutoring with contrasting forms of practice. J Educ Psychol, 105(1), 58–77. https://doi.org/https://doi.org/10.1037/a0030127.
Iuculano T, Padmanabhan A, Menon V. Systems neuroscience of mathematical cognition and learning: basic organization and neural sources of heterogeneity in typical and atypical development. In A. Henik & W. Fias (Eds.) Heterogeneity of function in numerical cognition (chap. 15). Elsevier; 2018. pp. 287–336. https://doi.org/10.1016/B978-0-12-811529-9.00015-7.
Supekar K, Iuculano T, Chen L, Menon V. Remediation of childhood math anxiety and associated neural circuits through cognitive tutoring. J Neurosc. 2015;35(36):12,574–83. https://doi.org/10.1523/jneurosci.0786-15.2015.
Article
CAS
Google Scholar
Dehaene S. Précis of the number sense. Mind Lang. 2001;16(1):16–36. https://doi.org/10.1111/1468-0017.00154.
Article
Google Scholar
Van Overwalle F, Van de Steen F, Mariën P. Dynamic causal modeling of the effective connectivity between the cerebrum and cerebellum in social mentalizing across five studies. Cogn Affect Behav Neurosci. 2019;19(1):211–23. https://doi.org/10.3758/s13415-018-00659-y.
Akshoomoff N, Courchesne E, Townsend J. Attention coordination and anticipatory control. In: Schmahmann JD, editor. The cerebellum and cognition. New York: Academic Press; 1997. p. 575–98.
Google Scholar
Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20(3):271–9. https://doi.org/10.1007/s11065-010-9137-7.
Article
PubMed
PubMed Central
Google Scholar
Simmons FR, Singleton C. Do weak phonological representations impact on arithmetic development? A review of research into arithmetic and dyslexia. Dyslexia. 2008;14:77–94. https://doi.org/10.1002/dys.341.
Article
PubMed
Google Scholar
Soto-Calvo E, Simmons F, Adams A, Francis H, Giofrѐ D. Identifying the preschool home learning experiences that predict early number skills: Evidence from a longitudinal study. Early Childhood Research Quarterly. 53. 314–328. 2020. https://doi.org/10.1016/j.ecresq.2020.04.004.
Ambrose S. Paleolithic technology and human evolution. Science. 2001, March 2;291(5509):1748–53. https://doi.org/10.1126/science.1059487.
Article
CAS
PubMed
Google Scholar