Ito M. The modifiable neuronal network of the cerebellum. Jpn J Physiol. 1984;34:781–92.
CAS
PubMed
Google Scholar
Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13. doi:10.1038/nrn2332.
CAS
PubMed
Google Scholar
Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.
CAS
PubMed
Google Scholar
Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4:174–98.
CAS
PubMed
Google Scholar
Reeber SL, Otis TS, Sillitoe RV. New roles for the cerebellum in health and disease. Front Syst Neurosci. 2013;7:83. doi:10.3389/fnsys.2013.00083.
PubMed Central
PubMed
Google Scholar
Voogd J. The morphology of the cerebellum the last 25 years. Eur J Morphol. 1992;30:81–96.
CAS
PubMed
Google Scholar
Sotelo C, Wassef M. Cerebellar development: afferent organization and Purkinje cell heterogeneity. Philos Trans R Soc Lond B Biol Sci. 1991;331:307–13. doi10.1098/rstb.1991.0022.
CAS
PubMed
Google Scholar
Larsell O, Jansen J. The Comparative Anatomy and Histology of the Cerebellum. The Human Cerebellum, Cerebellar Connection, and Cerebellar Cortex. Archiveth ed. Minnesota: University of Minnesota Press; 1972.
Google Scholar
Marzban H, Kim CT, Doorn D, Chung SH, Hawkes R. A novel transverse expression domain in the mouse cerebellum revealed by a neurofilament-associated antigen. Neuroscience. 2008;153:1190–201. doi:10.1016/j.neuroscience.2008.02.036.
CAS
PubMed
Google Scholar
Sawada K, Fukui Y, Hawkes R. Spatial distribution of corticotropin-releasing factor immunopositive climbing fibers in the mouse cerebellum: analysis by whole mount immunohistochemistry. Brain Res. 2008;1222:106–17. doi:10.1016/j.brainres.2008.05.029.
CAS
PubMed
Google Scholar
Ozol K, Hayden JM, Oberdick J, Hawkes R. Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol. 1999;412:95–111.
CAS
PubMed
Google Scholar
Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Constitutive expression of the 25-kDa heat shock protein Hsp25 reveals novel parasagittal bands of purkinje cells in the adult mouse cerebellar cortex. J Comp Neurol. 2000;416:383–97.
CAS
PubMed
Google Scholar
Akintunde A, Eisenman LM. External cuneocerebellar projection and Purkinje cell zebrin II bands: a direct comparison of parasagittal banding in the mouse cerebellum. J Chem Neuroanat. 1994;7:75–86.
CAS
PubMed
Google Scholar
Ji Z, Hawkes R. Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections. Neuroscience. 1994;61:935–54.
CAS
PubMed
Google Scholar
Sugihara I. Organization and remodeling of the olivocerebellar climbing fiber projection. Cerebellum. 2006;5:15–22. doi:10.1080/14734220500527385.
PubMed
Google Scholar
Sugihara I, Shinoda Y. Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. J Neurosci. 2004;24:8771–85. doi:10.1523/JNEUROSCI.1961-04.2004.
CAS
PubMed
Google Scholar
Bailey K, Rahimi Balaei M, Mannan A, Del Bigio MR, Marzban H. Purkinje cell compartmentation in the cerebellum of the lysosomal Acid phosphatase 2 mutant mouse (nax - naked-ataxia mutant mouse). PLoS One. 2014;9:e94327. doi:10.1371/journal.pone.0094327.
PubMed Central
PubMed
Google Scholar
Bailey K, Rahimi Balaei M, Mehdizadeh M, Marzban H. Spatial and temporal expression of lysosomal acid phosphatase 2 (ACP2) reveals dynamic patterning of the mouse cerebellar cortex. Cerebellum. 2013;12:870–81. doi:10.1007/s12311-013-0502-y.
CAS
PubMed
Google Scholar
Voogd J, Gerrits NM, Ruigrok TJ. Organization of the vestibulocerebellum. Ann N Y Acad Sci. 1996;781:553–79.
CAS
PubMed
Google Scholar
Chung SH, Marzban H, Watanabe M, Hawkes R. Phospholipase Cbeta4 expression identifies a novel subset of unipolar brush cells in the adult mouse cerebellum. Cerebellum. 2009;8:267–76. doi:10.1007/s12311-009-0092-x.
CAS
PubMed
Google Scholar
Baumel Y, Jacobson GA, Cohen D. Implications of functional anatomy on information processing in the deep cerebellar nuclei. Front Cell Neurosci. 2009;3:14. doi:10.3389/neuro.03.014.2009.
PubMed Central
PubMed
Google Scholar
Manto M, Schmahmann JD, Rossi F, Gruol DL, Koibuchi N. Handbook of the Cerebellum and Cerebellar Disorders. Netherlands: Springer; 2013.
Google Scholar
Marani E, Voogd J. The morphology of the mouse cerebellum. Acta Morphol Neerl Scand. 1979;17:33–52.
CAS
PubMed
Google Scholar
Voogd J. The human cerebellum. J Chem Neuroanat. 2003;26:243–52.
PubMed
Google Scholar
Yaginuma H, Matsushita M. Spinocerebellar projections from the upper lumbar segments in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol. 1989;281:298–319. doi:10.1002/cne.902810211.
CAS
PubMed
Google Scholar
Marfurt CF, Rajchert DM. Trigeminal primary afferent projections to “non-trigeminal” areas of the rat central nervous system. J Comp Neurol. 1991;303:489–511. doi:10.1002/cne.903030313.
CAS
PubMed
Google Scholar
Steindler DA. Trigeminocerebellar, trigeminotectal, and trigeminothalamic projections: a double retrograde axonal tracing study in the mouse. J Comp Neurol. 1985;237:155–75. doi:10.1002/cne.902370203.
CAS
PubMed
Google Scholar
Voogd J, Epema AH, Rubertone JA. Cerebello-vestibular connections of the anterior vermis. A retrograde tracer study in different mammals including primates. Arch Ital Biol. 1991;129:3–19.
CAS
PubMed
Google Scholar
Epema AH, Gerrits NM, Voogd J. Secondary vestibulocerebellar projections to the flocculus and uvulo-nodular lobule of the rabbit: a study using HRP and double fluorescent tracer techniques. Exp Brain Res. 1990;80:72–82.
CAS
PubMed
Google Scholar
Valle MS, Garifoli A, Maci T, Perciavalle V. Reticulocerebellar projections to the anterior and posterior lobes of the rat cerebellum. Neurosci Lett. 2001;314:41–4.
CAS
PubMed
Google Scholar
Brodal P. Demonstration of a somatotopically organized projection onto the paramedian lobule and the anterior lobe from the lateral reticular nucleus: an experimental study with the horseradish peroxidase method. Brain Res. 1975;95:221–39.
CAS
PubMed
Google Scholar
Gerrits NM, Voogd J. The nucleus reticularis tegmenti pontis and the adjacent rostral paramedian reticular formation: differential projections to the cerebellum and the caudal brain stem. Exp Brain Res. 1986;62:29–45.
CAS
PubMed
Google Scholar
Brodal P. Further observations on the cerebellar projections from the pontine nuclei and the nucleus reticularis tegmenti pontis in the rhesus monkey. J Comp Neurol. 1982;204:44–55. doi:10.1002/cne.902040106.
CAS
PubMed
Google Scholar
Serapide MF, Cicirata F, Sotelo C, Panto MR, Parenti R. The pontocerebellar projection: longitudinal zonal distribution of fibers from discrete regions of the pontine nuclei to vermal and parafloccular cortices in the rat. Brain Res. 1994;644:175–80.
CAS
PubMed
Google Scholar
Azizi SA, Mihailoff GA, Burne RA, Woodward DJ. The pontocerebellar system in the rat: an HRP study. I Posterior vermis. J Comp Neurol. 1981;197:543–8. doi:10.1002/cne.901970402.
CAS
PubMed
Google Scholar
Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein J, Voogd J. Visual pontocerebellar projections in the macaque. J Comp Neurol. 1994;349:51–72. doi:10.1002/cne.903490105.
CAS
PubMed
Google Scholar
Belknap DB, McCrea RA. Anatomical connections of the prepositus and abducens nuclei in the squirrel monkey. J Comp Neurol. 1988;268:13–28. doi:10.1002/cne.902680103.
CAS
PubMed
Google Scholar
Gravel C, Hawkes R. Parasagittal organization of the rat cerebellar cortex: direct comparison of Purkinje cell compartments and the organization of the spinocerebellar projection. J Comp Neurol. 1990;291:79–102. doi:10.1002/cne.902910107.
CAS
PubMed
Google Scholar
Wu HS, Sugihara I, Shinoda Y. Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol. 1999;411:97–118.
CAS
PubMed
Google Scholar
Serapide MF, Panto MR, Parenti R, Zappala A, Cicirata F. Multiple zonal projections of the basilar pontine nuclei to the cerebellar cortex of the rat. J Comp Neurol. 2001;430:471–84.
CAS
PubMed
Google Scholar
Desclin JC. Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Res. 1974;77:365–84.
CAS
PubMed
Google Scholar
Sugihara I, Wu H, Shinoda Y. Morphology of axon collaterals of single climbing fibers in the deep cerebellar nuclei of the rat. Neurosci Lett. 1996;217:33–6.
CAS
PubMed
Google Scholar
Eisenman LM. Organization of the olivocerebellar projection to the uvula in the rat. Brain Behav Evol. 1984;24:1–12.
CAS
PubMed
Google Scholar
Eisenman LM. Olivocerebellar projections to the pyramis and copula pyramidis in the rat: differential projections to parasagittal zones. J Comp Neurol. 1981;199:65–76. doi:10.1002/cne.901990105.
CAS
PubMed
Google Scholar
Campbell NC, Armstrong DM. Topographical localization in the olivocerebellar projection in the rat: an autoradiographic study. Brain Res. 1983;275:235–49.
CAS
PubMed
Google Scholar
Schweighofer N, Doya K, Kuroda S. Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res Brain Res Rev. 2004;44:103–16. doi:10.1016/j.brainresrev.2003.10.004.
PubMed
Google Scholar
Ito M. Long-term depression. Annu Rev Neurosci. 1989;12:85–102. doi:10.1146/annurev.ne.12.030189.000505.
CAS
PubMed
Google Scholar
Jaarsma D, Ruigrok TJ, Caffe R, Cozzari C, Levey AI, Mugnaini E, et al. Cholinergic innervation and receptors in the cerebellum. Prog Brain Res. 1997;114:67–96.
CAS
PubMed
Google Scholar
Jueptner M, Ottinger S, Fellows SJ, Adamschewski J, Flerich L, Muller SP, et al. The relevance of sensory input for the cerebellar control of movements. Neuroimage. 1997;5:41–8. doi:10.1006/nimg.1996.0249.
CAS
PubMed
Google Scholar
Chilton JK. Molecular mechanisms of axon guidance. Dev Biol. 2006;292:13–24. doi:10.1016/j.ydbio.2005.12.048.
CAS
PubMed
Google Scholar
Weth F, Fiederling F, Gebhardt C, Bastmeyer M. Chemoaffinity in topographic mapping revisited - Is it more about fiber-fiber than fiber-target interactions? Semin Cell Dev Biol. 2014. doi:10.1016/j.semcdb.2014.07.010.
PubMed
Google Scholar
Hou ST, Jiang SX, Smith RA. Permissive and repulsive cues and signalling pathways of axonal outgrowth and regeneration. Int Rev Cell Mol Biol. 2008;267:125–81. doi:10.1016/S1937-6448(08)00603-5.
CAS
PubMed
Google Scholar
Pasterkamp RJ. Getting neural circuits into shape with semaphorins. Nat Rev Neurosci. 2012;13:605–18. doi:10.1038/nrn3302.
CAS
PubMed
Google Scholar
Rajasekharan S, Kennedy TE. The netrin protein family. Genome Biol. 2009;10:239. doi:10.1186/gb-2009-10-9-239.
PubMed Central
PubMed
Google Scholar
Masuda T, Sakuma C, Yaginuma H. Role for netrin-1 in sensory axonal guidance in higher vertebrates. Fukushima J Med Sci. 2009;55:1–6.
CAS
PubMed
Google Scholar
Liao WX, Wing DA, Geng JG, Chen DB. Perspectives of SLIT/ROBO signaling in placental angiogenesis. Histol Histopathol. 2010;25:1181–90.
CAS
PubMed
Google Scholar
Li XT, Zhou QS, Yu Q, Zhao X, Liu QX. Current progress in functions of axon guidance molecule Robo and underlying molecular mechanism. Sheng Li Xue Bao. 2014;66:373–85.
CAS
PubMed
Google Scholar
Lilienbaum A, Reszka AA, Horwitz AF, Holt CE. Chimeric integrins expressed in retinal ganglion cells impair process outgrowth in vivo. Mol Cell Neurosci. 1995;6:139–52. doi:10.1006/mcne.1995.1013.
CAS
PubMed
Google Scholar
Bonkowsky JL, Yoshikawa S, O’Keefe DD, Scully AL, Thomas JB. Axon routing across the midline controlled by the Drosophila Derailed receptor. Nature. 1999;402:540–4. doi:10.1038/990122.
CAS
PubMed
Google Scholar
Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell. 2003;113:11–23.
CAS
PubMed
Google Scholar
Bourikas D, Pekarik V, Baeriswyl T, Grunditz A, Sadhu R, Nardo M, et al. Sonic hedgehog guides commissural axons along the longitudinal axis of the spinal cord. Nat Neurosci. 2005;8:297–304. doi:10.1038/nn1396.
CAS
PubMed
Google Scholar
Augsburger A, Schuchardt A, Hoskins S, Dodd J, Butler S. BMPs as mediators of roof plate repulsion of commissural neurons. Neuron. 1999;24:127–41.
CAS
PubMed
Google Scholar
Nishida K, Flanagan JG, Nakamoto M. Domain-specific olivocerebellar projection regulated by the EphA-ephrin-A interaction. Development. 2002;129:5647–58.
CAS
PubMed
Google Scholar
Karam SD, Dottori M, Ogawa K, Henderson JT, Boyd AW, Pasquale EB, et al. EphA4 is not required for Purkinje cell compartmentation. Brain Res Dev Brain Res. 2002;135:29–38.
CAS
PubMed
Google Scholar
Karam SD, Burrows RC, Logan C, Koblar S, Pasquale EB, Bothwell M. Eph receptors and ephrins in the developing chick cerebellum: relationship to sagittal patterning and granule cell migration. J Neurosci. 2000;20:6488–500.
CAS
PubMed
Google Scholar
Baader SL, Vogel MW, Sanlioglu S, Zhang X, Oberdick J. Selective disruption of “late onset” sagittal banding patterns by ectopic expression of engrailed-2 in cerebellar Purkinje cells. J Neurosci. 1999;19:5370–9.
CAS
PubMed
Google Scholar
Sillitoe RV, Joyner AL. Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol. 2007;23:549–77. doi:10.1146/annurev.cellbio.23.090506.123237.
CAS
PubMed
Google Scholar
Ackerman SL, Kozak LP, Przyborski SA, Rund LA, Boyer BB, Knowles BB. The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature. 1997;386:838–42. doi:10.1038/386838a0.
CAS
PubMed
Google Scholar
Hall AC, Lucas FR, Salinas PC. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell. 2000;100:525–35.
CAS
PubMed
Google Scholar
Dun XP. Origin of climbing fiber neurons and the definition of rhombic lip. Int J Dev Neurosci. 2012;30:391–5. doi:10.1016/j.ijdevneu.2012.02.002.
CAS
PubMed
Google Scholar
McEvilly RJ, Erkman L, Luo L, Sawchenko PE, Ryan AF, Rosenfeld MG. Requirement for Brn-3.0 in differentiation and survival of sensory and motor neurons. Nature. 1996;384:574–7. doi:10.1038/384574a0.
CAS
PubMed
Google Scholar
Bae YK, Kani S, Shimizu T, Tanabe K, Nojima H, Kimura Y, et al. Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev Biol. 2009;330:406–26. doi:10.1016/j.ydbio.2009.04.013.
CAS
PubMed
Google Scholar
Sherrard RM, Bower AJ. Climbing fiber development: do neurotrophins have a part to play? Cerebellum. 2002;1:265–75. doi:10.1080/147342202320883579.
CAS
PubMed
Google Scholar
Hawkes R. Purkinje cell stripes and long-term depression at the parallel fiber-Purkinje cell synapse. Front Syst Neurosci. 2014;8:41. doi:10.3389/fnsys.2014.00041.
PubMed Central
PubMed
Google Scholar
Grishkat HL, Eisenman LM. Development of the spinocerebellar projection in the prenatal mouse. J Comp Neurol. 1995;363:93–108. doi:10.1002/cne.903630109.
CAS
PubMed
Google Scholar
Delgado-Garcia JM. Structure and function of the cerebellum. Rev Neurol. 2001;33:635–42.
CAS
PubMed
Google Scholar
Mason CA, Gregory E. Postnatal maturation of cerebellar mossy and climbing fibers: transient expression of dual features on single axons. J Neurosci. 1984;4:1715–35.
CAS
PubMed
Google Scholar
Kalinovsky A, Boukhtouche F, Blazeski R, Bornmann C, Suzuki N, Mason CA, et al. Development of axon-target specificity of ponto-cerebellar afferents. PLoS Biol. 2011;9, e1001013. doi:10.1371/journal.pbio.1001013.
CAS
PubMed Central
PubMed
Google Scholar
Tolbert DL, Pittman T, Alisky JM, Clark BR. Chronic NMDA receptor blockade or muscimol inhibition of cerebellar cortical neuronal activity alters the development of spinocerebellar afferent topography. Brain Res Dev Brain Res. 1994;80:268–74.
CAS
PubMed
Google Scholar
Arsenio Nunes ML, Sotelo C, Wehrle R. Organization of spinocerebellar projection map in three types of agranular cerebellum: Purkinje cells vs. granule cells as organizer element. J Comp Neurol. 1988;273:120–36. doi:10.1002/cne.902730110.
CAS
PubMed
Google Scholar
Eisenman LM, Arlinghaus LE. Spinocerebellar projection in the meander tail mutant mouse: organization in the granular posterior lobe and the agranular anterior lobe. Brain Res. 1991;558:149–52.
CAS
PubMed
Google Scholar
Matsushita M, Tanami T. Contralateral termination of primary afferent axons in the sacral and caudal segments of the cat, as studied by anterograde transport of horseradish peroxidase. J Comp Neurol. 1983;220:206–18. doi:10.1002/cne.902200208.
CAS
PubMed
Google Scholar
Matsushita M, Hosoya Y, Ikeda M. Anatomical organization of the spinocerebellar system in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol. 1979;184:81–106. doi:10.1002/cne.901840106.
CAS
PubMed
Google Scholar
Shrestha SS, Bannatyne BA, Jankowska E, Hammar I, Nilsson E, Maxwell DJ. Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord. J Physiol. 2012;590:1737–55. doi:10.1113/jphysiol.2011.226852.
CAS
PubMed Central
PubMed
Google Scholar
Oscarsson O. Functional Organization of the Spino- and Cuneocerebellar Tracts. Physiol Rev. 1965;45:495–522.
CAS
PubMed
Google Scholar
Lundberg A. Function of the ventral spinocerebellar tract. A new hypothesis. Exp Brain Res. 1971;12:317–30.
CAS
PubMed
Google Scholar
Hammar I, Krutki P, Drzymala-Celichowska H, Nilsson E, Jankowska E. A trans-spinal loop between neurones in the reticular formation and in the cerebellum. J Physiol. 2011;589:653–65. doi:10.1113/jphysiol.2010.201178.
CAS
PubMed Central
PubMed
Google Scholar
Necker R. Spinal neurons projecting to anterior or posterior cerebellum in the pigeon. Anat Embryol (Berl). 1992;185:325–34.
CAS
Google Scholar
Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4:2–6. doi:10.1080/14734220510007914.
CAS
PubMed
Google Scholar
Jayadev S, Bird TD. Hereditary ataxias: overview. Genet Med. 2013;15:673–83. doi:10.1038/gim.2013.28.
CAS
PubMed
Google Scholar
White JJ, Sillitoe RV. Development of the cerebellum: from gene expression patterns to circuit maps. Wiley Interdiscip Rev Dev Biol. 2013;2:149–64. doi:10.1002/wdev.65.
CAS
PubMed
Google Scholar
Lakke EA. The projections to the spinal cord of the rat during development: a timetable of descent. Adv Anat Embryol Cell Biol. 1997;135:I–XIV, 1–143.
CAS
PubMed
Google Scholar
Joshua M, Medina JF, Lisberger SG. Diversity of neural responses in the brainstem during smooth pursuit eye movements constrains the circuit mechanisms of neural integration. J Neurosci. 2013;33:6633–47. doi:10.1523/JNEUROSCI.3732-12.2013.
CAS
PubMed Central
PubMed
Google Scholar
Ashwell KW, Zhang LL. Ontogeny of afferents to the fetal rat cerebellum. Acta Anat (Basel). 1992;145:17–23.
CAS
Google Scholar
Kim D, Ackerman SL. The UNC5C netrin receptor regulates dorsal guidance of mouse hindbrain axons. J Neurosci. 2011;31:2167–79. doi:10.1523/JNEUROSCI.5254-10.2011.
CAS
PubMed Central
PubMed
Google Scholar
Lakke EA, Guldemond JM, Voogd J. The ontogeny of the spinocerebellar projection in the chicken. A study using WGA-HRP as a tracer. Acta Histochem Suppl. 1986;32:47–51.
CAS
PubMed
Google Scholar
van der Linden JA, ten Donkelaar HJ. Observations on the development of cerebellar afferents in Xenopus laevis. Anat Embryol (Berl). 1987;176:431–9.
CAS
Google Scholar
Joseph BS, Whitlock DG. Central projections of selected spinal dorsal roots in anuran amphibians. Anat Rec. 1968;160:279–88. doi:10.1002/ar.1091600214.
CAS
PubMed
Google Scholar
Antal M, Tornai I, Szekely G. Longitudinal extent of dorsal root fibres in the spinal cord and brain stem of the frog. Neuroscience. 1980;5:1311–22.
CAS
PubMed
Google Scholar
Bangma GC, ten Donkelaar H. Afferent connections of the cerebellum in various types of reptiles. J Comp Neurol. 1982;207:255–73. doi:10.1002/cne.902070306.
CAS
PubMed
Google Scholar
Rodriguez-Moldes I, Carrera I, Pose-Mendez S, Quintana-Urzainqui I, Candal E, Anadon R, et al. Regionalization of the shark hindbrain: a survey of an ancestral organization. Front Neuroanat. 2011;5:16. doi:10.3389/fnana.2011.00016.
PubMed Central
PubMed
Google Scholar
Pose-Mendez S, Candal E, Adrio F, Rodriguez-Moldes I. Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes. J Comp Neurol. 2014;522:131–68. doi:10.1002/cne.23393.
PubMed
Google Scholar
Bathla G, Hegde AN. The trigeminal nerve: an illustrated review of its imaging anatomy and pathology. Clin Radiol. 2013;68:203–13. doi:10.1016/j.crad.2012.05.019.
CAS
PubMed
Google Scholar
Stainier DY, Gilbert W. The monoclonal antibody B30 recognizes a specific neuronal cell surface antigen in the developing mesencephalic trigeminal nucleus of the mouse. J Neurosci. 1989;9:2468–85.
CAS
PubMed
Google Scholar
Walker HK. Cranial nerve V: the trigeminal nerve. In: HK Walker, WD Hall, JW Hurst, editors. Clinical Methods: the history, physical, and laboratory examinations. Boston; 1990.
Billig I, Yatim N, Compoint C, Buisseret-Delmas C, Buisseret P. Cerebellar afferences from the mesencephalic trigeminal nucleus in the rat. Neuroreport. 1995;6:2293–6.
CAS
PubMed
Google Scholar
Hayashi H, Sumino R, Sessle BJ. Functional organization of trigeminal subnucleus interpolaris: nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray. J Neurophysiol. 1984;51:890–905.
CAS
PubMed
Google Scholar
Jacquin MF, Semba K, Rhoades RW, Egger MD. Trigeminal primary afferents project bilaterally to dorsal horn and ipsilaterally to cerebellum, reticular formation, and cuneate, solitary, supratrigeminal and vagal nuclei. Brain Res. 1982;246:285–91.
CAS
PubMed
Google Scholar
Patrick GW, Robinson MA. Collateral projections from trigeminal sensory nuclei to ventrobasal thalamus and cerebellar cortex in rats. J Morphol. 1987;192:229–36. doi:10.1002/jmor.1051920305.
CAS
PubMed
Google Scholar
Saigal RP, Karamanlidis AN, Voogd J, Mangana O, Michaloudi H. Secondary trigeminocerebellar projections in sheep studied with the horseradish peroxidase tracing method. J Comp Neurol. 1980;189:537–53. doi:10.1002/cne.901890307.
CAS
PubMed
Google Scholar
Falls WM, Alban MM. Morphological features of identified trigeminocerebellar projection neurons in the border zone of rat trigeminal nucleus oralis. Somatosens Res. 1986;4:1–12.
CAS
PubMed
Google Scholar
Shambes GM, Gibson JM, Welker W. Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav Evol. 1978;15:94–140.
CAS
PubMed
Google Scholar
Patrick GW, Haines DE. Cerebellar afferents to paramedian lobule from the trigeminal complex in Tupaia glis: a horseradish peroxidase (HRP) study. J Morphol. 1982;172:209–22. doi:10.1002/jmor.1051720207.
CAS
PubMed
Google Scholar
Gonzalez A, ten Donkelaar HJ, de Boer-van Huizen R. Cerebellar connections in Xenopus laevis. An HRP study. Anat Embryol (Berl). 1984;169:167–76.
CAS
Google Scholar
Arends JJ, Dubbeldam JL. The subnuclei and primary afferents of the descending trigeminal system in the mallard (Anas platyrhynchos L.). Neuroscience. 1984;13:781–95.
CAS
PubMed
Google Scholar
Gould BB. Organization of afferents from the brain stem nuclei to the cerebellar cortex in the cat. Adv Anat Embryol Cell Biol. 1980;62:v–viii, 1–90.
CAS
PubMed
Google Scholar
Arends JJ, Woelders-Blok A, Dubbeldam JL. The efferent connections of the nuclei of the descending trigeminal tract in the mallard (Anas platyrhynchos L.). Neuroscience. 1984;13:797–817.
CAS
PubMed
Google Scholar
Altman J, Bayer SA. Development of the brain stem in the rat. II. Thymidine-radiographic study of the time of origin of neurons of the upper medulla, excluding the vestibular and auditory nuclei. J Comp Neurol. 1980;194:37–56. doi:10.1002/cne.901940103.
CAS
PubMed
Google Scholar
Barmack NH. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull. 2003;60:511–41.
PubMed
Google Scholar
Highstein SM, Holstein GR. The anatomy of the vestibular nuclei. Prog Brain Res. 2006;151:157–203. doi:10.1016/S0079-6123(05)51006-9.
CAS
PubMed
Google Scholar
Langer T, Fuchs AF, Scudder CA, Chubb MC. Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol. 1985;235:1–25. doi:10.1002/cne.902350102.
CAS
PubMed
Google Scholar
Matsushita M, Wang CL. Projection pattern of vestibulocerebellar fibers in the anterior vermis of the cat: an anterograde wheat germ agglutinin-horseradish peroxidase study. Neurosci Lett. 1987;74:25–30.
CAS
PubMed
Google Scholar
Gerrits NM, Epema AH, van Linge A, Dalm E. The primary vestibulocerebellar projection in the rabbit: absence of primary afferents in the flocculus. Neurosci Lett. 1989;105:27–33.
CAS
PubMed
Google Scholar
Malinvaud D, Vassias I, Reichenberger I, Rossert C, Straka H. Functional organization of vestibular commissural connections in frog. J Neurosci. 2010;30:3310–25. doi:10.1523/JNEUROSCI.5318-09.2010.
CAS
PubMed
Google Scholar
Llinas R, Precht W, Kitai ST. Cerebellar Purkinje cell projection to the peripheral vestibular organ in the frog. Science. 1967;158:1328–30.
CAS
PubMed
Google Scholar
Fuller PM. Projections of the vestibular nuclear complex in the bullfrog (Rana catesbeiana). Brain Behav Evol. 1974;10:157–69.
CAS
PubMed
Google Scholar
Schwarz IE, Schwarz DW. Afferents to the cerebellar cortex of turtles studied by means of the horseradish peroxidase technique. Anat Embryol (Berl). 1980;160:39–52.
CAS
Google Scholar
Brecha N, Karten HJ, Hunt SP. Projections of the nucleus of the basal optic root in the pigeon: an autoradiographic and horseradish peroxidase study. J Comp Neurol. 1980;189:615–70. doi:10.1002/cne.901890404.
CAS
PubMed
Google Scholar
Kotchabhakdi N, Walberg F. Primary vestibular afferent projections to the cerebellum as demonstrated by retrograde axonal transport of horseradish peroxidase. Brain Res. 1978;142:142–6.
CAS
PubMed
Google Scholar
Korte GE, Mugnaini E. The cerebellar projection of the vestibular nerve in the cat. J Comp Neurol. 1979;184:265–77. doi:10.1002/cne.901840204.
CAS
PubMed
Google Scholar
Ruben RJ. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol. 1967;Suppl 220:1–44.
Google Scholar
Altman J, Bayer SA. Development of the brain stem in the rat. III. Thymidine-radiographic study of the time of origin of neurons of the vestibular and auditory nuclei of the upper medulla. J Comp Neurol. 1980;194:877–904. doi:10.1002/cne.901940410.
CAS
PubMed
Google Scholar
Maklad A, Kamel S, Wong E, Fritzsch B. Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice. Cell Tissue Res. 2010;340:303–21. doi:10.1007/s00441-010-0944-1.
PubMed Central
PubMed
Google Scholar
Morris RJ, Beech JN, Heizmann CW. Two distinct phases and mechanisms of axonal growth shown by primary vestibular fibres in the brain, demonstrated by parvalbumin immunohistochemistry. Neuroscience. 1988;27:571–96.
CAS
PubMed
Google Scholar
McConnell JA, Sechrist JW. Identification of early neurons in the brainstem and spinal cord: I. An autoradiographic study in the chick. J Comp Neurol. 1980;192:769–83. doi:10.1002/cne.901920410.
CAS
PubMed
Google Scholar
Gray’s Anatomy, The Anatomical Basis of Clinical Practice. Churchill Livingstone; 2008.
Clendenin M, Ekerot CF, Oscarsson O, Rosen I. Distribution in cerebellar cortex of mossy fibre afferents from the lateral reticular nucleus in the cat. Brain Res. 1974;69:136–9.
CAS
PubMed
Google Scholar
Ghazi H, Hrycyshyn AW, Flumerfelt BA. Double-labeling study of axonal branching within the lateral reticulocerebellar projection in the rat. J Comp Neurol. 1987;258:378–86. doi:10.1002/cne.902580306.
CAS
PubMed
Google Scholar
Altman J, Bayer SA. Development of the precerebellar nuclei in the rat: III. The posterior precerebellar extramural migratory stream and the lateral reticular and external cuneate nuclei. J Comp Neurol. 1987;257:513–28. doi:10.1002/cne.902570404.
CAS
PubMed
Google Scholar
Brodal P, Bjaalie JG. Organization of the pontine nuclei. Neurosci Res. 1992;13:83–118.
CAS
PubMed
Google Scholar
Odeh F, Ackerley R, Bjaalie JG, Apps R. Pontine maps linking somatosensory and cerebellar cortices are in register with climbing fiber somatotopy. J Neurosci. 2005;25:5680–90. doi:10.1523/JNEUROSCI.0558-05.2005.
CAS
PubMed
Google Scholar
Holtzman T, Cerminara NL, Edgley SA, Apps R. Characterization in vivo of bilaterally branching pontocerebellar mossy fibre to Golgi cell inputs in the rat cerebellum. Eur J Neurosci. 2009;29:328–39. doi:10.1111/j.1460-9568.2008.06572.x.
PubMed
Google Scholar
Gerrits NM, Voogd J. The projection of the nucleus reticularis tegmenti pontis and adjacent regions of the pontine nuclei to the central cerebellar nuclei in the cat. J Comp Neurol. 1987;258:52–69. doi:10.1002/cne.902580104.
CAS
PubMed
Google Scholar
Leergaard TB, Bjaalie JG. Topography of the complete corticopontine projection: from experiments to principal Maps. Front Neurosci. 2007;1:211–23. doi:10.3389/neuro.01.1.1.016.2007.
PubMed Central
PubMed
Google Scholar
Yee KT, Simon HH, Tessier-Lavigne M, O’Leary DM. Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. Neuron. 1999;24:607–22.
CAS
PubMed
Google Scholar
Altman J, Bayer SA. Prenatal development of the cerebellar system in the rat. II. Cytogenesis and histogenesis of the inferior olive, pontine gray, and the precerebellar reticular nuclei. J Comp Neurol. 1978;179:49–75. doi:10.1002/cne.901790105.
CAS
PubMed
Google Scholar
Wingate RJ, Hatten ME. The role of the rhombic lip in avian cerebellum development. Development. 1999;126:4395–404.
CAS
PubMed
Google Scholar
Clarke PG. Some visual and other connections to the cerebellum of the pigeon. J Comp Neurol. 1977;174:535–52. doi:10.1002/cne.901740307.
CAS
PubMed
Google Scholar
Sotelo C, Hillman DE, Zamora AJ, Llinas R. Climbing fiber deafferentation: its action on Purkinje cell dendritic spines. Brain Res. 1975;98:574–81.
CAS
PubMed
Google Scholar
Brodal A, Kawamura K. Olivocerebellar projection: a review. Adv Anat Embryol Cell Biol. 1980;64:IVIII, 1–140.
PubMed
Google Scholar
Sotelo C. Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol. 2004;72:295–339. doi:10.1016/j.pneurobio.2004.03.004.
CAS
PubMed
Google Scholar
Azizi SA, Woodward DJ. Inferior olivary nuclear complex of the rat: morphology and comments on the principles of organization within the olivocerebellar system. J Comp Neurol. 1987;263:467–84. doi:10.1002/cne.902630402.
CAS
PubMed
Google Scholar
Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33:253–8.
CAS
PubMed
Google Scholar
Llinas R. Eighteenth Bowditch lecture. Motor aspects of cerebellar control. Physiologist. 1974;17:19–46.
CAS
PubMed
Google Scholar
Cochran SL, Hackett JT. The climbing fiber afferent system of the frog. Brain Res. 1977;121:362–7.
CAS
PubMed
Google Scholar
Cochran SL, Hackett JT. Phylogenetically consistent features of cerebellar climbing fibers present in the tadpole. Brain Res. 1980;192:543–9.
CAS
PubMed
Google Scholar
Freedman SL, Voogd J, Vielvoye GJ. Experimental evidence for climbing fibers in the avian cerebellum. J Comp Neurol. 1977;175:243–52. doi:10.1002/cne.901750207.
CAS
PubMed
Google Scholar
Barnes JA, Ebner BA, Duvick LA, Gao W, Chen G, Orr HT, et al. Abnormalities in the climbing fiber-Purkinje cell circuitry contribute to neuronal dysfunction in ATXN1[82Q] mice. J Neurosci. 2011;31:12778–89. doi:10.1523/JNEUROSCI.2579-11.2011.
CAS
PubMed Central
PubMed
Google Scholar
Hidalgo-Sanchez M, Backer S, Puelles L, Bloch-Gallego E. Origin and plasticity of the subdivisions of the inferior olivary complex. Dev Biol. 2012;371:215–26. doi:10.1016/j.ydbio.2012.08.019.
CAS
PubMed
Google Scholar
Bourrat F, Sotelo C. Migratory pathways and neuritic differentiation of inferior olivary neurons in the rat embryo. Axonal tracing study using the in vitro slab technique. Brain Res. 1988;467:19–37.
CAS
PubMed
Google Scholar
Armstrong RC, Clarke PG. Neuronal death and the development of the pontine nuclei and inferior olive in the chick. Neuroscience. 1979;4:1635–47.
CAS
PubMed
Google Scholar
Wassef M, Cholley B, Heizmann CW, Sotelo C. Development of the olivocerebellar projection in the rat: II. Matching of the developmental compartmentations of the cerebellum and inferior olive through the projection map. J Comp Neurol. 1992;323:537–50. doi:10.1002/cne.903230406.
CAS
PubMed
Google Scholar
Paradies MA, Eisenman LM. Evidence of early topographic organization in the embryonic olivocerebellar projection: a model system for the study of pattern formation processes in the central nervous system. Dev Dyn. 1993;197:125–45. doi:10.1002/aja.1001970206.
CAS
PubMed
Google Scholar
Chedotal A, Sotelo C. Early Development of Olivocerebellar Projections in the Fetal Rat Using CGRP Immunocytochemistry. Eur J Neurosci. 1992;4:1159–79.
PubMed
Google Scholar
Chedotal A, Pourquie O, Ezan F, San Clemente H, Sotelo C. BEN as a presumptive target recognition molecule during the development of the olivocerebellar system. J Neurosci. 1996;16:3296–310.
CAS
PubMed
Google Scholar
Mason CA, Christakos S, Catalano SM. Early climbing fiber interactions with Purkinje cells in the postnatal mouse cerebellum. J Comp Neurol. 1990;297:77–90. doi:10.1002/cne.902970106.
CAS
PubMed
Google Scholar
Morara S, van der Want JJ, de Weerd H, Provini L, Rosina A. Ultrastructural analysis of climbing fiber-Purkinje cell synaptogenesis in the rat cerebellum. Neuroscience. 2001;108:655–71.
CAS
PubMed
Google Scholar
Crepel F, Delhaye-Bouchaud N, Dupont JL. Fate of the multiple innervation of cerebellar Purkinje cells by climbing fibers in immature control, x-irradiated and hypothyroid rats. Brain Res. 1981;227:59–71.
CAS
PubMed
Google Scholar
Mariani J, Changeux JP. Ontogenesis of olivocerebellar relationships. I. Studies by intracellular recordings of the multiple innervation of Purkinje cells by climbing fibers in the developing rat cerebellum. J Neurosci. 1981;1:696–702.
CAS
PubMed
Google Scholar
Watanabe M, Kano M. Climbing fiber synapse elimination in cerebellar Purkinje cells. Eur J Neurosci. 2011;34:1697–710. doi:10.1111/j.1460-9568.2011.07894.x.
PubMed
Google Scholar
Van der Want JJ, Wiklund L, Guegan M, Ruigrok T, Voogd J. Anterograde tracing of the rat olivocerebellar system with Phaseolus vulgaris leucoagglutinin (PHA-L). Demonstration of climbing fiber collateral innervation of the cerebellar nuclei. J Comp Neurol. 1989;288:1–18. doi:10.1002/cne.902880102.
CAS
PubMed
Google Scholar
Cummings SL, Young 3rd WS, King JS. Early development of cerebellar afferent systems that contain corticotropin-releasing factor. J Comp Neurol. 1994;350:534–49. doi:10.1002/cne.903500403.
CAS
PubMed
Google Scholar
Murakami Y, Uchida K, Rijli FM, Kuratani S. Evolution of the brain developmental plan: Insights from agnathans. Dev Biol. 2005;280:249–59. doi:10.1016/j.ydbio.2005.02.008.
CAS
PubMed
Google Scholar
Bozhilova-Pastirova A, Ovtscharoff W. The inferior oilvary complex. Adv Anat Embryol Cell Biol. 2000;155:III–VI, 1–84.
CAS
PubMed
Google Scholar
Pose Méndez SM. Developmental study of the cerebellum in cartilaginous fishes: towards the identification of primitive features of the cerebellar formation in gnathostomes. 2013.
Google Scholar
Bishop GA, Ho RH. The distribution and origin of serotonin immunoreactivity in the rat cerebellum. Brain Res. 1985;331:195–207.
CAS
PubMed
Google Scholar
Kerr CW, Bishop GA. Topographical organization in the origin of serotoninergic projections to different regions of the cat cerebellar cortex. J Comp Neurol. 1991;304:502–15. doi:10.1002/cne.903040313.
CAS
PubMed
Google Scholar
Kitzman PH, Bishop GA. The origin of serotoninergic afferents to the cat’s cerebellar nuclei. J Comp Neurol. 1994;340:541–50. doi:10.1002/cne.903400407.
CAS
PubMed
Google Scholar
Strahlendorf JC, Hubbard GD. Serotonergic interactions with rat cerebellar Purkinje cells. Brain Res Bull. 1983;11:265–9.
CAS
PubMed
Google Scholar
Saitow F, Murano M, Suzuki H. Modulatory effects of serotonin on GABAergic synaptic transmission and membrane properties in the deep cerebellar nuclei. J Neurophysiol. 2009;101:1361–74. doi:10.1152/jn.90750.2008.
CAS
PubMed
Google Scholar
Oades RD. Dopamine-serotonin interactions in attention-deficit hyperactivity disorder (ADHD). Prog Brain Res. 2008;172:543–65. doi:10.1016/S0079-6123(08)00926-6.
CAS
PubMed
Google Scholar
Ciesielski KT, Harris RJ, Hart BL, Pabst HF. Cerebellar hypoplasia and frontal lobe cognitive deficits in disorders of early childhood. Neuropsychologia. 1997;35:643–55.
CAS
PubMed
Google Scholar
Whitaker-Azmitia PM. Behavioral and cellular consequences of increasing serotonergic activity during brain development: a role in autism? Int J Dev Neurosci. 2005;23:75–83. doi:10.1016/j.ijdevneu.2004.07.022.
CAS
PubMed
Google Scholar
Lauder JM. Ontogeny of the serotonergic system in the rat: serotonin as a developmental signal. Ann N Y Acad Sci. 1990;600:297–313. discussion 4.
CAS
PubMed
Google Scholar
Lidov HG, Molliver ME. An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain Res Bull. 1982;8:389–430.
CAS
PubMed
Google Scholar
Sako H, Kojima T, Okado N. Immunohistochemical study on the development of serotoninergic neurons in the chick: I. Distribution of cell bodies and fibers in the brain. J Comp Neurol. 1986;253:61–78. doi:10.1002/cne.902530106.
CAS
PubMed
Google Scholar
Ueda S, Nojyo Y, Sano Y. Immunohistochemical demonstration of the serotonin neuron system in the central nervous system of the bullfrog, Rana catesbeiana. Anat Embryol (Berl). 1984;169:219–29.
CAS
Google Scholar
Kimoto Y, Satoh K, Sakumoto T, Tohyama M, Shimizu N. Afferent fiber connections from the lower brain stem to the rat cerebellum by the horseradish peroxidase method combined with MAO staining, with special reference to noradrenergic neurons. J Hirnforsch. 1978;19:85–100.
CAS
PubMed
Google Scholar
Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev. 2003;42:33–84.
PubMed
Google Scholar
Singewald N, Philippu A. Release of neurotransmitters in the locus coeruleus. Prog Neurobiol. 1998;56:237–67.
CAS
PubMed
Google Scholar
Bickford P. Motor learning deficits in aged rats are correlated with loss of cerebellar noradrenergic function. Brain Res. 1993;620:133–8.
CAS
PubMed
Google Scholar
Shi M, Hu ZL, Zheng MH, Song NN, Huang Y, Zhao G, et al. Notch-Rbpj signaling is required for the development of noradrenergic neurons in the mouse locus coeruleus. J Cell Sci. 2012;125:4320–32. doi:10.1242/jcs.102152.
CAS
PubMed
Google Scholar
Sievers J, Klemm HP. Locus coeruleus - cerebellum: interaction during development. Bibl Anat. 1982;56–75.
Barmack NH, Baughman RW, Eckenstein FP. Cholinergic innervation of the cerebellum of rat, rabbit, cat, and monkey as revealed by choline acetyltransferase activity and immunohistochemistry. J Comp Neurol. 1992;317:233–49. doi:10.1002/cne.903170303.
CAS
PubMed
Google Scholar
Barmack NH, Baughman RW, Eckenstein FP, Shojaku H. Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers. J Comp Neurol. 1992;317:250–70. doi:10.1002/cne.903170304.
CAS
PubMed
Google Scholar
Barmack NH, Baughman RW, Eckenstein FP. Cholinergic innervation of the cerebellum of the rat by secondary vestibular afferents. Ann N Y Acad Sci. 1992;656:566–79.
CAS
PubMed
Google Scholar
Mallol J, Sarraga MC, Bartolome M, Ghandour MS, Gombos G. Muscarinic receptor during postnatal development of rat cerebellum: an index of cholinergic synapse formation? J Neurochem. 1984;42:1641–9.
CAS
PubMed
Google Scholar
Ikai Y, Takada M, Shinonaga Y, Mizuno N. Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei. Neuroscience. 1992;51:719–28.
CAS
PubMed
Google Scholar
Barili P, Bronzetti E, Ricci A, Zaccheo D, Amenta F. Microanatomical localization of dopamine receptor protein immunoreactivity in the rat cerebellar cortex. Brain Res. 2000;854:130–8.
CAS
PubMed
Google Scholar
Lauder JM, Bloom FE. Ontogeny of monoamine neurons in the locus coeruleus, Raphe nuclei and substantia nigra of the rat. I Cell differentiation. J Comp Neurol. 1974;155:469–81. doi:10.1002/cne.901550407.
CAS
PubMed
Google Scholar
Lumsden A, Krumlauf R. Patterning the vertebrate neuraxis. Science. 1996;274:1109–15.
CAS
PubMed
Google Scholar
Panula P, Takagi H, Inagaki N, Yamatodani A, Tohyama M, Wada H, et al. Histamine-containing nerve fibers innervate human cerebellum. Neurosci Lett. 1993;160:53–6.
CAS
PubMed
Google Scholar
Takemura M, Kitanaka N, Kitanaka J. Signal transduction by histamine in the cerebellum and its modulation by N-methyltransferase. Cerebellum. 2003;2:39–43. doi:10.1080/14734220310015601.
CAS
PubMed
Google Scholar
Airaksinen MS, Panula P. The histaminergic system in the guinea pig central nervous system: an immunocytochemical mapping study using an antiserum against histamine. J Comp Neurol. 1988;273:163–86. doi:10.1002/cne.902730204.
CAS
PubMed
Google Scholar
Panula P, Airaksinen MS, Pirvola U, Kotilainen E. A histamine-containing neuronal system in human brain. Neuroscience. 1990;34:127–32.
CAS
PubMed
Google Scholar
Auvinen S, Panula P. Development of histamine-immunoreactive neurons in the rat brain. J Comp Neurol. 1988;276:289–303. doi:10.1002/cne.902760211.
CAS
PubMed
Google Scholar