Owada K, Ishikawa K, Toru S, Ishida G, Gomyoda M, Tao O, et al. A clinical, genetic, and neuropathologic study in a family with 16q-linked ADCA type III. Neurology. 2005;65(4):629–32. https://doi.org/10.1212/01.wnl.0000173065.75680.e2.
Article
CAS
PubMed
Google Scholar
Ohata T, Yoshida K, Sakai H, Hamanoue H, Mizuguchi T, Shimizu Y, et al. A-16C>T substitution in the 5′ UTR of the puratrophin-1 gene is prevalent in autosomal dominant cerebellar ataxia in Nagano. J Hum Genet. 2006;51(5):461–6. https://doi.org/10.1007/s10038-006-0385-6.
Article
CAS
PubMed
Google Scholar
Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T, Tsunemi T, et al. Spinocerebellar ataxia type 31 is associated with "inserted" penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet. 2009;85(5):544–57. https://doi.org/10.1016/j.ajhg.2009.09.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimizu K, Hanajima R, Satou S, Shimizu T, Watanabe K, Kaneko A, et al. Holmes’s tremor caused by coexisting Parkinson’s disease in a case of spinocerebellar ataxia type 31. Neurol Clin Neurosci. 2017;5(2):71–2. https://doi.org/10.1111/ncn3.12114.
Article
Google Scholar
Saito R, Kikuno S, Maeda M, Uesaka Y, Ida M. A case of 77-year-old male with spinocerebellar ataxia type 31 with left dominant dystonia. Rinsho Shinkeigaku. 2014;54(8):643–7. https://doi.org/10.5692/clinicalneurol.54.643.
Article
PubMed
Google Scholar
Hasegawa A, Koike R, Koh K, Kawakami A, Hara N, Takiyama Y, et al. Co-existence of spastic paraplegia-30 with novel KIF1A mutation and spinocerebellar ataxia 31 with intronic expansion of BEAN and TK2 in a family. J Neurol Sci. 2017;372:128–30. https://doi.org/10.1016/j.jns.2016.11.032.
Article
PubMed
Google Scholar
Adachi T, Kitayama M, Nakano T, Adachi Y, Kato S, Nakashima K. Autopsy case of spinocerebellar ataxia type 31 with severe dementia at the terminal stage. Neuropathology. 2015;35(3):273–9. https://doi.org/10.1111/neup.12184.
Article
PubMed
Google Scholar
Toru S, Ishida S, Uchihara T, Hirokawa K, Kitagawa M, Ishikawa K. Comorbid argyrophilic grain disease in an 87-year-old male with spinocerebellar ataxia type 31 with dementia: a case report. BMC Neurol. 2020;20(1):136. https://doi.org/10.1186/s12883-020-01723-2.
Article
PubMed
PubMed Central
Google Scholar
Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015;30(12):1591–601. https://doi.org/10.1002/mds.26424.
Article
PubMed
Google Scholar
Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Movement Disorder Society-endorsed PSP Study Group. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Mov Disord. 2017;32(6):853–64.
Article
Google Scholar
Mukai M, Sugaya K, Yabe I, Goto Y, Yokochi F, Miyamoto K, et al. Neuromelanin MRI in a family with mitochondrial parkinsonism harboring a Y955C mutation in POLG1. Parkinsonism Relat Disord. 2013;19(9):821–4. https://doi.org/10.1016/j.parkreldis.2013.04.011.
Article
PubMed
Google Scholar
Aoki K, Kawata A, Suda M, Hirai S. Clinical features of autosomal dominant spinocerebellar ataxias genetically unclassified into any known triplet-repeat diseases. Rinsho Shinkeigaku. 2001;41(1):18–23.
CAS
PubMed
Google Scholar
Ishikawa K, Toru S, Tsunemi T, Li M, Kobayashi K, Yokota T, et al. An autosomal dominant cerebellar ataxia linked to chromosome 16q22.1 is associated with a single-nucleotide substitution in the 5’untranslated region of the gene encoding a protein with spectrin repeat and Rho guanine-nucleotide exchange-factor domains. Am J Hum Genet. 2005;77(2):280–96.
Article
CAS
Google Scholar
Sakai H, Yoshida K, Shimizu Y, Morita H, Ikeda S, Matsumoto N. Analysis of an insertion mutation in a cohort of 94 patients with spinocerebellar ataxia type 31 from Nagano, Japan. Neurogenetics. 2010;11(4):409–15. https://doi.org/10.1007/s10048-010-0245-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oba H, Yagishita A, Terada H, Barkovich AJ, Kutomi K, Yamauchi T, et al. New and reliable MRI diagnosis for progressive supranuclear palsy. Neurology. 2005;64(12):2050–5. https://doi.org/10.1212/01.WNL.0000165960.04422.D0.
Article
CAS
PubMed
Google Scholar
Quattrone A, Nicoletti G, Messina D, Fera F, Condino F, Pugliese P, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology. 2008;246(1):214–21. https://doi.org/10.1148/radiol.2453061703.
Article
PubMed
Google Scholar
Hotter A, Esterhammer R, Schocke MF, Seppi K. Potential of advanced MR imaging techniques in the differential diagnosis of parkinsonism. Mov Disord. 2009;24(suppl 2):S711–20. https://doi.org/10.1002/mds.22648.
Article
PubMed
Google Scholar
Massey LA, Micallef C, Paviour DC, O'Sullivan SS, Ling H, Williams DR, et al. Conventional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. Mov Disord. 2012;27(14):1754–62. https://doi.org/10.1002/mds.24968.
Article
PubMed
Google Scholar
Paviour DC, Price SL, Jahanshahi M, Lees AJ, Fox NC. Longitudinal MRI in progressive supranuclear palsy and multiple system atrophy: rates and regions of atrophy. Brain. 2006;129(4):1040–9. https://doi.org/10.1093/brain/awl021.
Article
PubMed
Google Scholar
Choi SM, Kim BC, Nam TS, Kim JT, Lee SH, Park MS, et al. Midbrain atrophy in vascular parkinsonism. Eur Neurol. 2011;65(5):296–301. https://doi.org/10.1159/000326907.
Article
PubMed
PubMed Central
Google Scholar
Varrone A, Salvatore E, De Michele G, Barone P, Sansone V, Pellecchia MT, et al. Reduced striatal [123 I]FP-CIT binding in SCA2 patients without parkinsonism. Ann Neurol. 2004;55(3):426–30. https://doi.org/10.1002/ana.20054.
Article
CAS
PubMed
Google Scholar
Schöls L, Reimold M, Seidel K, Globas C, Brockmann K, Hauser TK, et al. No parkinsonism in SCA2 and SCA3 despite severe neurodegeneration of the dopaminergic substantia nigra. Brain. 2015;138(11):3316–26. https://doi.org/10.1093/brain/awv255.
Article
PubMed
Google Scholar
Tzoulis C, Tran GT, Schwarzlmüller T, Specht K, Haugarvoll K, Balafkan N, et al. Severe nigrostriatal degeneration without clinical parkinsonism in patients with polymerase gamma mutations. Brain. 2013;136(8):2393–404. https://doi.org/10.1093/brain/awt103.
Article
PubMed
Google Scholar
Dickson DW. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb Perspect Med. 2012;2(8):a009258.
Article
Google Scholar
Rivest J, Quinn N, Gibbs J, Marsden CD. Unilateral abolition of extrapyramidal rigidity after ipsilateral cerebellar infarction. Mov Disord. 1990;5(4):328–30. https://doi.org/10.1002/mds.870050414.
Article
CAS
PubMed
Google Scholar
Haugarvoll K, Bindoff LA, Tzoulis C. Nigrostriatal denervation sine parkinsonism. Brain. 2016;139(4):e25. https://doi.org/10.1093/brain/awv410.
Article
PubMed
Google Scholar
Wojciechowska M, Krzyzosiak WJ. Cellular toxicity of expanded RNA repeats: focus on RNA foci. Hum Mol Genet. 2011;20(19):3811–21. https://doi.org/10.1093/hmg/ddr299.
Article
CAS
PubMed
PubMed Central
Google Scholar
Todd PK, Oh SY, Krans A, He F, Sellier C, Frazer M, et al. CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron. 2013;78(3):440–55. https://doi.org/10.1016/j.neuron.2013.03.026.
Article
CAS
PubMed
Google Scholar
Jain A, Vale RD. RNA phase transitions in repeat expansion disorders. Nature. 2017;546(7657):243–7. https://doi.org/10.1038/nature22386.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saha S, Hyman AA. RNA gets in phase. J Cell Biol. 2017;216(8):2235–7. https://doi.org/10.1083/jcb.201706034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishiguro T, Sato N, Ueyama M, Fujikake N, Sellier C, Kanegami A, et al. Regulatory role of RNA chaperone TDP-43 for RNA misfolding and repeat-associated translation in SCA31. Neuron. 2017;94(1):108–24. https://doi.org/10.1016/j.neuron.2017.02.046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rayaprolu S, Fujioka S, Traynor S, Soto-Ortolaza AI, Petrucelli L, Dickson DW, et al. TARDBP mutations in Parkinson’s disease. Parkinsonism Relat Disord. 2013;19(3):312–5. https://doi.org/10.1016/j.parkreldis.2012.11.003.
Article
PubMed
Google Scholar
Ma D, Tan YJ, Ng ASL, Ong HL, Sim W, Lim WK, et al. Association of NOTCH2NLC repeat expansions with Parkinson disease. JAMA Neurol. 2020;77(12):1–5.
Article
Google Scholar
Shi CH, Fan Y, Yang J, Yuan YP, Shen S, Liu F, et al. NOTCH2NLC intermediate-length repeat expansions are associated with Parkinson disease. Ann Neurol. 2021;89(1):182–7. https://doi.org/10.1002/ana.25925.
Article
CAS
PubMed
Google Scholar
De Pablo-Fernandez E, Doherty KM, Holton JL, Revesz T, Djamshidian A, Limousin P, et al. Concomitant fragile X-associated tremor ataxia syndrome and Parkinson's disease: a clinicopathological report of two cases. J Neurol Neurosurg Psychiatry. 2015;86(8):934–6. https://doi.org/10.1136/jnnp-2014-309460.
Article
PubMed
Google Scholar
Paucar M, Beniaminov S, Paslawski W, Svenningsson P. PSP-CBS with dopamine deficiency in a female with a FMR1 premutation. Cerebellum. 2016;15(5):636–40. https://doi.org/10.1007/s12311-016-0793-x.
Article
CAS
PubMed
Google Scholar
Salomão RPA, Vale TC, Marussi VHR, Barsottini OGP, Pedroso JL. Late-onset hummingbird sign in a woman with fragile X premutation. J Neurol Sci. 2019;403:75–7. https://doi.org/10.1016/j.jns.2019.06.016.
Article
PubMed
Google Scholar